Howard Anton (Drexel University), Chris Rorres (Drexel University), Anton Kaul
Elementary Linear Algebra, Applications Version, EMEA Edition
Howard Anton (Drexel University), Chris Rorres (Drexel University), Anton Kaul
Elementary Linear Algebra, Applications Version, EMEA Edition
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Elementary Linear Algebra: Applications Version, 12th Edition gives an elementary treatment of linear algebra that is suitable for a first course for undergraduate students. The aim is to present the fundamentals of linear algebra in the clearest possible way; pedagogy is the main consideration. Calculus is not a prerequisite, but there are clearly labeled exercises and examples (which can be omitted without loss of continuity) for students who have studied calculus.
Andere Kunden interessierten sich auch für
- Ray SteegeSchaum's Outline of Intermediate Algebra, Third Edition33,99 €
- Crista ArangalaExploring Linear Algebra63,99 €
- David C. MelloInvitation to Linear Algebra40,99 €
- C. EdwardsDifferential Equations and Linear Algebra, Global Edition106,99 €
- George HoweMathematics for the Practical Man;Explaining Simply and Quickly all the Elements of Algebra, Geometry, Trigonometry, Logarithms, Coordinate Geometry, Calculus with Answers to Problems35,99 €
- Lina OliveiraLinear Algebra50,99 €
- Lina OliveiraLinear Algebra123,99 €
-
-
-
Elementary Linear Algebra: Applications Version, 12th Edition gives an elementary treatment of linear algebra that is suitable for a first course for undergraduate students. The aim is to present the fundamentals of linear algebra in the clearest possible way; pedagogy is the main consideration. Calculus is not a prerequisite, but there are clearly labeled exercises and examples (which can be omitted without loss of continuity) for students who have studied calculus.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons Inc
- 12 ed
- Seitenzahl: 816
- Erscheinungstermin: 5. Dezember 2019
- Englisch
- Abmessung: 274mm x 216mm x 28mm
- Gewicht: 2160g
- ISBN-13: 9781119666141
- ISBN-10: 1119666147
- Artikelnr.: 60114009
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: John Wiley & Sons Inc
- 12 ed
- Seitenzahl: 816
- Erscheinungstermin: 5. Dezember 2019
- Englisch
- Abmessung: 274mm x 216mm x 28mm
- Gewicht: 2160g
- ISBN-13: 9781119666141
- ISBN-10: 1119666147
- Artikelnr.: 60114009
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
1 Systems of Linear Equations and Matrices 1 1.1 Introduction to Systems of Linear Equations 2 1.2 Gaussian Elimination 11 1.3 Matrices and Matrix Operations 25 1.4 Inverses; Algebraic Properties of Matrices 40 1.5 Elementary Matrices and a Method for Finding A
1 53 1.6 More on Linear Systems and Invertible Matrices 62 1.7 Diagonal, Triangular, and Symmetric Matrices 69 1.8 Introduction to Linear Transformations 76 1.9 Compositions of Matrix Transformations 90 1.10 Applications of Linear Systems 98
Network Analysis 98
Electrical Circuits 100
Balancing Chemical Equations 103
Polynomial Interpolation 105 1.11 Leontief Input-Output Models 110 2 Determinants 118 2.1 Determinants by Cofactor Expansion 118 2.2 Evaluating Determinants by Row Reduction 126 2.3 Properties of Determinants; Cramer's Rule 133 3 Euclidean Vector Spaces 146 3.1 Vectors in 2-Space, 3-Space, and n-Space 146 3.2 Norm, Dot Product, and Distance in Rn 158 3.3 Orthogonality 172 3.4 The Geometry of Linear Systems 183 3.5 Cross Product 190 4 General Vector Spaces 202 4.1 Real Vector Spaces 202 4.2 Subspaces 211 4.3 Spanning Sets 220 4.4 Linear Independence 228 4.5 Coordinates and Basis 238 4.6 Dimension 248 4.7 Change of Basis 256 4.8 Row Space, Column Space, and Null Space 263 4.9 Rank, Nullity, and the Fundamental Matrix Spaces 276 5 Eigenvalues and Eigenvectors 291 5.1 Eigenvalues and Eigenvectors 291 5.2 Diagonalization 301 5.3 Complex Vector Spaces 311 5.4 Differential Equations 323 5.5 Dynamical Systems and Markov Chains 329 6 Inner Product Spaces 341 6.1 Inner Products 341 6.2 Angle and Orthogonality in Inner Product Spaces 352 6.3 Gram-Schmidt Process; QR-Decomposition 361 6.4 Best Approximation; Least Squares 376 6.5 Mathematical Modeling Using Least Squares 385 6.6 Function Approximation; Fourier Series 392 7 Diagonalization and Quadratic Forms 399 7.1 Orthogonal Matrices 399 7.2 Orthogonal Diagonalization 408 7.3 Quadratic Forms 416 7.4 Optimization Using Quadratic Forms 429 7.5 Hermitian, Unitary, and Normal Matrices 436 8 General Linear Transformations 446 8.1 General Linear Transformations 446 8.2 Compositions and Inverse Transformations 459 8.3 Isomorphism 471 8.4 Matrices for General Linear Transformations 477 8.5 Similarity 487 8.6 Geometry of Matrix Operators 493 9 Numerical Methods 509 9.1 LU-Decompositions 509 9.2 The Power Method 519 9.3 Comparison of Procedures for Solving Linear Systems 528 9.4 Singular Value Decomposition 532 9.5 Data Compression Using Singular Value Decomposition 540 10 Applications of Linear Algebra 545 10.1 Constructing Curves and Surfaces Through Specified Points 546 10.2 The Earliest Applications of Linear Algebra 551 10.3 Cubic Spline Interpolation 558 10.4 Markov Chains 568 10.5 Graph Theory 577 10.6 Games of Strategy 587 10.7 Forest Management 595 10.8 Computer Graphics 602 10.9 Equilibrium Temperature Distributions 610 10.10 Computed Tomography 619 10.11 Fractals 629 10.12 Chaos 645 10.13 Cryptography 658 10.14 Genetics 669 10.15 Age-Specific Population Growth 678 10.16 Harvesting of Animal Populations 687 10.17 A Least Squares Model for Human Hearing 695 10.18 Warps and Morphs 701 10.19 Internet Search Engines 710 10.20 Facial Recognition 716 Supplemental Online Topics
Linear Programming - A Geometric Approach
Linear Programming - Basic Concepts
Linear Programming - The Simplex Method
Vectors in Plane Geometry
Equilibrium of Rigid Bodies
The Assignment Problem
The Determinant Function
Leontief Economic Models Appendix A Working with Proofs A1 Appendix B Complex Numbers A5 Answers to Exercises A13 Index I1
1 53 1.6 More on Linear Systems and Invertible Matrices 62 1.7 Diagonal, Triangular, and Symmetric Matrices 69 1.8 Introduction to Linear Transformations 76 1.9 Compositions of Matrix Transformations 90 1.10 Applications of Linear Systems 98
Network Analysis 98
Electrical Circuits 100
Balancing Chemical Equations 103
Polynomial Interpolation 105 1.11 Leontief Input-Output Models 110 2 Determinants 118 2.1 Determinants by Cofactor Expansion 118 2.2 Evaluating Determinants by Row Reduction 126 2.3 Properties of Determinants; Cramer's Rule 133 3 Euclidean Vector Spaces 146 3.1 Vectors in 2-Space, 3-Space, and n-Space 146 3.2 Norm, Dot Product, and Distance in Rn 158 3.3 Orthogonality 172 3.4 The Geometry of Linear Systems 183 3.5 Cross Product 190 4 General Vector Spaces 202 4.1 Real Vector Spaces 202 4.2 Subspaces 211 4.3 Spanning Sets 220 4.4 Linear Independence 228 4.5 Coordinates and Basis 238 4.6 Dimension 248 4.7 Change of Basis 256 4.8 Row Space, Column Space, and Null Space 263 4.9 Rank, Nullity, and the Fundamental Matrix Spaces 276 5 Eigenvalues and Eigenvectors 291 5.1 Eigenvalues and Eigenvectors 291 5.2 Diagonalization 301 5.3 Complex Vector Spaces 311 5.4 Differential Equations 323 5.5 Dynamical Systems and Markov Chains 329 6 Inner Product Spaces 341 6.1 Inner Products 341 6.2 Angle and Orthogonality in Inner Product Spaces 352 6.3 Gram-Schmidt Process; QR-Decomposition 361 6.4 Best Approximation; Least Squares 376 6.5 Mathematical Modeling Using Least Squares 385 6.6 Function Approximation; Fourier Series 392 7 Diagonalization and Quadratic Forms 399 7.1 Orthogonal Matrices 399 7.2 Orthogonal Diagonalization 408 7.3 Quadratic Forms 416 7.4 Optimization Using Quadratic Forms 429 7.5 Hermitian, Unitary, and Normal Matrices 436 8 General Linear Transformations 446 8.1 General Linear Transformations 446 8.2 Compositions and Inverse Transformations 459 8.3 Isomorphism 471 8.4 Matrices for General Linear Transformations 477 8.5 Similarity 487 8.6 Geometry of Matrix Operators 493 9 Numerical Methods 509 9.1 LU-Decompositions 509 9.2 The Power Method 519 9.3 Comparison of Procedures for Solving Linear Systems 528 9.4 Singular Value Decomposition 532 9.5 Data Compression Using Singular Value Decomposition 540 10 Applications of Linear Algebra 545 10.1 Constructing Curves and Surfaces Through Specified Points 546 10.2 The Earliest Applications of Linear Algebra 551 10.3 Cubic Spline Interpolation 558 10.4 Markov Chains 568 10.5 Graph Theory 577 10.6 Games of Strategy 587 10.7 Forest Management 595 10.8 Computer Graphics 602 10.9 Equilibrium Temperature Distributions 610 10.10 Computed Tomography 619 10.11 Fractals 629 10.12 Chaos 645 10.13 Cryptography 658 10.14 Genetics 669 10.15 Age-Specific Population Growth 678 10.16 Harvesting of Animal Populations 687 10.17 A Least Squares Model for Human Hearing 695 10.18 Warps and Morphs 701 10.19 Internet Search Engines 710 10.20 Facial Recognition 716 Supplemental Online Topics
Linear Programming - A Geometric Approach
Linear Programming - Basic Concepts
Linear Programming - The Simplex Method
Vectors in Plane Geometry
Equilibrium of Rigid Bodies
The Assignment Problem
The Determinant Function
Leontief Economic Models Appendix A Working with Proofs A1 Appendix B Complex Numbers A5 Answers to Exercises A13 Index I1
1 Systems of Linear Equations and Matrices 1 1.1 Introduction to Systems of Linear Equations 2 1.2 Gaussian Elimination 11 1.3 Matrices and Matrix Operations 25 1.4 Inverses; Algebraic Properties of Matrices 40 1.5 Elementary Matrices and a Method for Finding A
1 53 1.6 More on Linear Systems and Invertible Matrices 62 1.7 Diagonal, Triangular, and Symmetric Matrices 69 1.8 Introduction to Linear Transformations 76 1.9 Compositions of Matrix Transformations 90 1.10 Applications of Linear Systems 98
Network Analysis 98
Electrical Circuits 100
Balancing Chemical Equations 103
Polynomial Interpolation 105 1.11 Leontief Input-Output Models 110 2 Determinants 118 2.1 Determinants by Cofactor Expansion 118 2.2 Evaluating Determinants by Row Reduction 126 2.3 Properties of Determinants; Cramer's Rule 133 3 Euclidean Vector Spaces 146 3.1 Vectors in 2-Space, 3-Space, and n-Space 146 3.2 Norm, Dot Product, and Distance in Rn 158 3.3 Orthogonality 172 3.4 The Geometry of Linear Systems 183 3.5 Cross Product 190 4 General Vector Spaces 202 4.1 Real Vector Spaces 202 4.2 Subspaces 211 4.3 Spanning Sets 220 4.4 Linear Independence 228 4.5 Coordinates and Basis 238 4.6 Dimension 248 4.7 Change of Basis 256 4.8 Row Space, Column Space, and Null Space 263 4.9 Rank, Nullity, and the Fundamental Matrix Spaces 276 5 Eigenvalues and Eigenvectors 291 5.1 Eigenvalues and Eigenvectors 291 5.2 Diagonalization 301 5.3 Complex Vector Spaces 311 5.4 Differential Equations 323 5.5 Dynamical Systems and Markov Chains 329 6 Inner Product Spaces 341 6.1 Inner Products 341 6.2 Angle and Orthogonality in Inner Product Spaces 352 6.3 Gram-Schmidt Process; QR-Decomposition 361 6.4 Best Approximation; Least Squares 376 6.5 Mathematical Modeling Using Least Squares 385 6.6 Function Approximation; Fourier Series 392 7 Diagonalization and Quadratic Forms 399 7.1 Orthogonal Matrices 399 7.2 Orthogonal Diagonalization 408 7.3 Quadratic Forms 416 7.4 Optimization Using Quadratic Forms 429 7.5 Hermitian, Unitary, and Normal Matrices 436 8 General Linear Transformations 446 8.1 General Linear Transformations 446 8.2 Compositions and Inverse Transformations 459 8.3 Isomorphism 471 8.4 Matrices for General Linear Transformations 477 8.5 Similarity 487 8.6 Geometry of Matrix Operators 493 9 Numerical Methods 509 9.1 LU-Decompositions 509 9.2 The Power Method 519 9.3 Comparison of Procedures for Solving Linear Systems 528 9.4 Singular Value Decomposition 532 9.5 Data Compression Using Singular Value Decomposition 540 10 Applications of Linear Algebra 545 10.1 Constructing Curves and Surfaces Through Specified Points 546 10.2 The Earliest Applications of Linear Algebra 551 10.3 Cubic Spline Interpolation 558 10.4 Markov Chains 568 10.5 Graph Theory 577 10.6 Games of Strategy 587 10.7 Forest Management 595 10.8 Computer Graphics 602 10.9 Equilibrium Temperature Distributions 610 10.10 Computed Tomography 619 10.11 Fractals 629 10.12 Chaos 645 10.13 Cryptography 658 10.14 Genetics 669 10.15 Age-Specific Population Growth 678 10.16 Harvesting of Animal Populations 687 10.17 A Least Squares Model for Human Hearing 695 10.18 Warps and Morphs 701 10.19 Internet Search Engines 710 10.20 Facial Recognition 716 Supplemental Online Topics
Linear Programming - A Geometric Approach
Linear Programming - Basic Concepts
Linear Programming - The Simplex Method
Vectors in Plane Geometry
Equilibrium of Rigid Bodies
The Assignment Problem
The Determinant Function
Leontief Economic Models Appendix A Working with Proofs A1 Appendix B Complex Numbers A5 Answers to Exercises A13 Index I1
1 53 1.6 More on Linear Systems and Invertible Matrices 62 1.7 Diagonal, Triangular, and Symmetric Matrices 69 1.8 Introduction to Linear Transformations 76 1.9 Compositions of Matrix Transformations 90 1.10 Applications of Linear Systems 98
Network Analysis 98
Electrical Circuits 100
Balancing Chemical Equations 103
Polynomial Interpolation 105 1.11 Leontief Input-Output Models 110 2 Determinants 118 2.1 Determinants by Cofactor Expansion 118 2.2 Evaluating Determinants by Row Reduction 126 2.3 Properties of Determinants; Cramer's Rule 133 3 Euclidean Vector Spaces 146 3.1 Vectors in 2-Space, 3-Space, and n-Space 146 3.2 Norm, Dot Product, and Distance in Rn 158 3.3 Orthogonality 172 3.4 The Geometry of Linear Systems 183 3.5 Cross Product 190 4 General Vector Spaces 202 4.1 Real Vector Spaces 202 4.2 Subspaces 211 4.3 Spanning Sets 220 4.4 Linear Independence 228 4.5 Coordinates and Basis 238 4.6 Dimension 248 4.7 Change of Basis 256 4.8 Row Space, Column Space, and Null Space 263 4.9 Rank, Nullity, and the Fundamental Matrix Spaces 276 5 Eigenvalues and Eigenvectors 291 5.1 Eigenvalues and Eigenvectors 291 5.2 Diagonalization 301 5.3 Complex Vector Spaces 311 5.4 Differential Equations 323 5.5 Dynamical Systems and Markov Chains 329 6 Inner Product Spaces 341 6.1 Inner Products 341 6.2 Angle and Orthogonality in Inner Product Spaces 352 6.3 Gram-Schmidt Process; QR-Decomposition 361 6.4 Best Approximation; Least Squares 376 6.5 Mathematical Modeling Using Least Squares 385 6.6 Function Approximation; Fourier Series 392 7 Diagonalization and Quadratic Forms 399 7.1 Orthogonal Matrices 399 7.2 Orthogonal Diagonalization 408 7.3 Quadratic Forms 416 7.4 Optimization Using Quadratic Forms 429 7.5 Hermitian, Unitary, and Normal Matrices 436 8 General Linear Transformations 446 8.1 General Linear Transformations 446 8.2 Compositions and Inverse Transformations 459 8.3 Isomorphism 471 8.4 Matrices for General Linear Transformations 477 8.5 Similarity 487 8.6 Geometry of Matrix Operators 493 9 Numerical Methods 509 9.1 LU-Decompositions 509 9.2 The Power Method 519 9.3 Comparison of Procedures for Solving Linear Systems 528 9.4 Singular Value Decomposition 532 9.5 Data Compression Using Singular Value Decomposition 540 10 Applications of Linear Algebra 545 10.1 Constructing Curves and Surfaces Through Specified Points 546 10.2 The Earliest Applications of Linear Algebra 551 10.3 Cubic Spline Interpolation 558 10.4 Markov Chains 568 10.5 Graph Theory 577 10.6 Games of Strategy 587 10.7 Forest Management 595 10.8 Computer Graphics 602 10.9 Equilibrium Temperature Distributions 610 10.10 Computed Tomography 619 10.11 Fractals 629 10.12 Chaos 645 10.13 Cryptography 658 10.14 Genetics 669 10.15 Age-Specific Population Growth 678 10.16 Harvesting of Animal Populations 687 10.17 A Least Squares Model for Human Hearing 695 10.18 Warps and Morphs 701 10.19 Internet Search Engines 710 10.20 Facial Recognition 716 Supplemental Online Topics
Linear Programming - A Geometric Approach
Linear Programming - Basic Concepts
Linear Programming - The Simplex Method
Vectors in Plane Geometry
Equilibrium of Rigid Bodies
The Assignment Problem
The Determinant Function
Leontief Economic Models Appendix A Working with Proofs A1 Appendix B Complex Numbers A5 Answers to Exercises A13 Index I1