I. J. Maddox
Elements of Functional Analysis
I. J. Maddox
Elements of Functional Analysis
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This 1970 textbook aims to provide a truly introductory course in functional analysis.
Andere Kunden interessierten sich auch für
- John D PryceBasic Methods of Linear Functional Analysis18,99 €
- V S PugachevLectures on Functional Analysis and Applications61,99 €
- Martin DavisA First Course in Functional Analysis12,99 €
- Hashish MassandLinear Operators in Functional Analysis102,99 €
- Wolodymyr V PetryshynApproximation-solvability of Nonlinear Functional and Differential Equations91,99 €
- Jerome A. GoldsteinStochastic Processes and Functional Analysis377,99 €
- P S MilojevicNonlinear Functional Analysis314,99 €
-
-
-
This 1970 textbook aims to provide a truly introductory course in functional analysis.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Revised
- Seitenzahl: 256
- Erscheinungstermin: 21. Januar 2011
- Englisch
- Abmessung: 229mm x 152mm x 15mm
- Gewicht: 421g
- ISBN-13: 9780521358682
- ISBN-10: 052135868X
- Artikelnr.: 27052929
- Verlag: Cambridge University Press
- Revised
- Seitenzahl: 256
- Erscheinungstermin: 21. Januar 2011
- Englisch
- Abmessung: 229mm x 152mm x 15mm
- Gewicht: 421g
- ISBN-13: 9780521358682
- ISBN-10: 052135868X
- Artikelnr.: 27052929
Preface to the second edition
Preface to the first edition
Part I. Basic Set Theory and Analysis: 1. Sets and functions
2. Real and complex numbers
3. Sequences of functions, continuity, differentiability
4. Inequalities
Part II. Metric and Topological Spaces: 1. Metric and semimetric spaces
2. Complete metric spaces
3. Some metric and topological concepts
4. Continuous functions on metric and topological spaces
5. Compact sets
6. Category and uniform boundedness
Part III. Linear and Linear Metric Spaces: 1. Linear spaces
2. Subspaces, dimensionality, factorspaces, convex sets
3. Metric linear spaces, topological linear spaces
4. Basis
Part IV. Normed Linear Spaces: 1. Convergence and completeness
2. Linear operators and functionals
3. The Banach-Steinhaus theorem
4. The open mapping and closed graph theorems
5. The Hahn-Banach extension
6. Weak topology and weak convergence
Part V. 1. Algebras and Banach algebras
2. Homomorphisms and isomorphisms
3. The spectrum and the Gelfand-Mazaur theorem
4. The Weiner algebra
Part VI. Hilbert Space: 1. Inner product and Hilbert spaces
2. Orthonormal sets
3. The dual space of a Hilbert space
4. Symmetric and compact operators
Part VII. Applications: 1. Differential and integral problems
2. The Sturm-Liouville problem
3. Matrix transformations in sequence spaces
Appendix
Bibliography
Index.
Preface to the first edition
Part I. Basic Set Theory and Analysis: 1. Sets and functions
2. Real and complex numbers
3. Sequences of functions, continuity, differentiability
4. Inequalities
Part II. Metric and Topological Spaces: 1. Metric and semimetric spaces
2. Complete metric spaces
3. Some metric and topological concepts
4. Continuous functions on metric and topological spaces
5. Compact sets
6. Category and uniform boundedness
Part III. Linear and Linear Metric Spaces: 1. Linear spaces
2. Subspaces, dimensionality, factorspaces, convex sets
3. Metric linear spaces, topological linear spaces
4. Basis
Part IV. Normed Linear Spaces: 1. Convergence and completeness
2. Linear operators and functionals
3. The Banach-Steinhaus theorem
4. The open mapping and closed graph theorems
5. The Hahn-Banach extension
6. Weak topology and weak convergence
Part V. 1. Algebras and Banach algebras
2. Homomorphisms and isomorphisms
3. The spectrum and the Gelfand-Mazaur theorem
4. The Weiner algebra
Part VI. Hilbert Space: 1. Inner product and Hilbert spaces
2. Orthonormal sets
3. The dual space of a Hilbert space
4. Symmetric and compact operators
Part VII. Applications: 1. Differential and integral problems
2. The Sturm-Liouville problem
3. Matrix transformations in sequence spaces
Appendix
Bibliography
Index.
Preface to the second edition
Preface to the first edition
Part I. Basic Set Theory and Analysis: 1. Sets and functions
2. Real and complex numbers
3. Sequences of functions, continuity, differentiability
4. Inequalities
Part II. Metric and Topological Spaces: 1. Metric and semimetric spaces
2. Complete metric spaces
3. Some metric and topological concepts
4. Continuous functions on metric and topological spaces
5. Compact sets
6. Category and uniform boundedness
Part III. Linear and Linear Metric Spaces: 1. Linear spaces
2. Subspaces, dimensionality, factorspaces, convex sets
3. Metric linear spaces, topological linear spaces
4. Basis
Part IV. Normed Linear Spaces: 1. Convergence and completeness
2. Linear operators and functionals
3. The Banach-Steinhaus theorem
4. The open mapping and closed graph theorems
5. The Hahn-Banach extension
6. Weak topology and weak convergence
Part V. 1. Algebras and Banach algebras
2. Homomorphisms and isomorphisms
3. The spectrum and the Gelfand-Mazaur theorem
4. The Weiner algebra
Part VI. Hilbert Space: 1. Inner product and Hilbert spaces
2. Orthonormal sets
3. The dual space of a Hilbert space
4. Symmetric and compact operators
Part VII. Applications: 1. Differential and integral problems
2. The Sturm-Liouville problem
3. Matrix transformations in sequence spaces
Appendix
Bibliography
Index.
Preface to the first edition
Part I. Basic Set Theory and Analysis: 1. Sets and functions
2. Real and complex numbers
3. Sequences of functions, continuity, differentiability
4. Inequalities
Part II. Metric and Topological Spaces: 1. Metric and semimetric spaces
2. Complete metric spaces
3. Some metric and topological concepts
4. Continuous functions on metric and topological spaces
5. Compact sets
6. Category and uniform boundedness
Part III. Linear and Linear Metric Spaces: 1. Linear spaces
2. Subspaces, dimensionality, factorspaces, convex sets
3. Metric linear spaces, topological linear spaces
4. Basis
Part IV. Normed Linear Spaces: 1. Convergence and completeness
2. Linear operators and functionals
3. The Banach-Steinhaus theorem
4. The open mapping and closed graph theorems
5. The Hahn-Banach extension
6. Weak topology and weak convergence
Part V. 1. Algebras and Banach algebras
2. Homomorphisms and isomorphisms
3. The spectrum and the Gelfand-Mazaur theorem
4. The Weiner algebra
Part VI. Hilbert Space: 1. Inner product and Hilbert spaces
2. Orthonormal sets
3. The dual space of a Hilbert space
4. Symmetric and compact operators
Part VII. Applications: 1. Differential and integral problems
2. The Sturm-Liouville problem
3. Matrix transformations in sequence spaces
Appendix
Bibliography
Index.