Dieses Fachbuch, geschrieben von zwei weltweit führenden Koryphäen auf dem Gebiet der Elektrochemie, beschreibt detailliert die zentralen elektrochemischen Reaktionen, die als Grundlage für die heutige Erforschung alternativer Energielösungen dienen. - Bietet eine zugängliche und gut lesbare Zusammenfassung zu elektrochemischen Verfahren und der Anwendung elektrochemischer Konzepte bei funktionalen Systemen auf Molekularebene. - Enthält ein neues Kapitel zu dem protonengekoppelten Elektronentransfer, ein vollständig überarbeitetes Kapitel zur molekularen Katalyse bei elektrochemischen…mehr
Dieses Fachbuch, geschrieben von zwei weltweit führenden Koryphäen auf dem Gebiet der Elektrochemie, beschreibt detailliert die zentralen elektrochemischen Reaktionen, die als Grundlage für die heutige Erforschung alternativer Energielösungen dienen. - Bietet eine zugängliche und gut lesbare Zusammenfassung zu elektrochemischen Verfahren und der Anwendung elektrochemischer Konzepte bei funktionalen Systemen auf Molekularebene. - Enthält ein neues Kapitel zu dem protonengekoppelten Elektronentransfer, ein vollständig überarbeitetes Kapitel zur molekularen Katalyse bei elektrochemischen Reaktionen sowie durchgängig neue Abschnitte. - Stellt die Verbindung zwischen der Elektrochemie, der Molekular- und Biomolekularchemie her und stärkt deren Zusammenspiel, indem eine Vielzahl von Funktionen präsentiert werden, die sich mit Multi-Komponenten-Systemen und Paradigmen aus beiden Bereichen der Chemie erreichen lassen. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
JEAN-MICHEL SAVÉANT is a Professor of Chemistry at Denis Diderot University of Paris, France, a member of the French Academy of Sciences, and a foreign associate of the National Academy of Sciences of the USA. CYRILLE COSTENTIN is a Professor of Chemistry at Denis Diderot University of Paris, France.
Inhaltsangabe
Preface xv
1 Single-Electron Transfer at an Electrode 1
1.1 Introduction 1
1.2 Cyclic Voltammetry of Fast Electron Transfers: Nernstian Waves 2
1.2.1 One-Electron Transfer to Molecules Attached to the Electrode Surface 2
1.2.2 One-Electron Transfer to Free-moving Molecules 6
1.3 Technical Aspects 10
1.3.1 The Cyclic Voltammetry Experiment - Faradaic and Double-Layer Charging Currents. Ohmic Drop 10
1.3.2 Other Techniques. Convolution 21
1.4 Electron Transfer Kinetics 29
1.4.1 Introduction 29
1.4.2 Butler-Volmer Law and Marcus-Hush-Levich (MHL) Model 31
1.4.3 Extraction of Electron Transfer Kinetics from Cyclic Voltammetric Signals. Comparison with Other Techniques 46
1.4.4 Experimental Testing of the Electron Transfer Models 59
1.5 Successive One-Electron Transfers vs. Two-Electron Transfers 64
1.5.3 Response of Molecules Containing Identical and Independent Reducible or Oxidizable Groups 72
1.5.4 An Example of the Predominating Role of Solvation: The Oxidoreduction of Carotenoids 72
1.5.5 An Example of the Predominating Role of Structural Changes: The Reduction of trans-2,3-Dinitro-2-butene 75
References 77
2 Coupling of Electrode Electron Transfers with Homogeneous Chemical Reactions 81
2.1 Introduction 81
2.2 Establishing the Mechanism and Measuring the Rate Constants for Homogeneous Reactions by Means of Cyclic Voltammetry and Potential Step Chronoamperometry 83
2.2.1 The EC Mechanism 83
2.2.2 The CE Mechanism 97
2.2.3 The Square Scheme Mechanism 99
2.2.4 The ECE and DISP Mechanisms 100
2.2.5 Electrodimerization 107
2.2.6 Homogeneous Catalytic Reaction Schemes 113
2.2.6.1 Homogeneous Electron Transfer as the Rate-Determining Step 114
2.2.6.2 Homogeneous Catalytic EC Mechanism 117
2.2.6.3 Deactivation of the Mediator 120
2.2.7 Electrodes as Catalysts: Electron-transfer Catalyzed Reactions 122
2.2.8 Numerical Computations: Simulations, Diagnostic Criteria, Working Curves 125
2.3 Product Distribution in Preparative Electrolysis 129
2.3.1 Introduction 129
2.3.2 General Features 130
2.3.3 Product Distribution Resulting from Competition Between Follow-Up Reactions 133
2.3.4 The ECE-DISP Competition 135
2.3.5 Other Reactions Schemes 136
2.4 Classification and Examples of Electron-Transfer Coupled Chemical Reactions 137
2.4.1 Coupling of Single Electron Transfer with Acid-Base Reactions 137
2.4.2 Electrodimerization 146
2.4.3 Electropolymerization 150
2.4.4 Reduction of Carbon Dioxide 151
2.4.5 H-Atom Transfer vs. Electron + Proton Transfer 153
2.4.6 The SRN1 Substitution: Electrodes and Electrons as Catalysts 157
2.4.7 Conformational Changes, Isomerization and Electron Transfer 162
2.5 Redox Properties of Transient Radicals 167
2.5.1 Introduction 167
2.5.2 The Direct Electrochemical Approach 167
2.5.3 Laser Flash Electron Injection 172
2.5.4 Photomodulation Voltammetry 176
2.6 Electrochemistry as a Trigger for Radical Chemistry or for Ionic Chemistry 177
References 179
3 Coupling Between Electron Transfer and Heavy Atom-Bond Breaking and Formation 183
1.5.3 Response of Molecules Containing Identical and Independent Reducible or Oxidizable Groups 72
1.5.4 An Example of the Predominating Role of Solvation: The Oxidoreduction of Carotenoids 72
1.5.5 An Example of the Predominating Role of Structural Changes: The Reduction of trans-2,3-Dinitro-2-butene 75
References 77
2 Coupling of Electrode Electron Transfers with Homogeneous Chemical Reactions 81
2.1 Introduction 81
2.2 Establishing the Mechanism and Measuring the Rate Constants for Homogeneous Reactions by Means of Cyclic Voltammetry and Potential Step Chronoamperometry 83
2.2.1 The EC Mechanism 83
2.2.2 The CE Mechanism 97
2.2.3 The Square Scheme Mechanism 99
2.2.4 The ECE and DISP Mechanisms 100
2.2.5 Electrodimerization 107
2.2.6 Homogeneous Catalytic Reaction Schemes 113
2.2.6.1 Homogeneous Electron Transfer as the Rate-Determining Step 114
2.2.6.2 Homogeneous Catalytic EC Mechanism 117
2.2.6.3 Deactivation of the Mediator 120
2.2.7 Electrodes as Catalysts: Electron-transfer Catalyzed Reactions 122
2.2.8 Numerical Computations: Simulations, Diagnostic Criteria, Working Curves 125
2.3 Product Distribution in Preparative Electrolysis 129
2.3.1 Introduction 129
2.3.2 General Features 130
2.3.3 Product Distribution Resulting from Competition Between Follow-Up Reactions 133
2.3.4 The ECE-DISP Competition 135
2.3.5 Other Reactions Schemes 136
2.4 Classification and Examples of Electron-Transfer Coupled Chemical Reactions 137
2.4.1 Coupling of Single Electron Transfer with Acid-Base Reactions 137
2.4.2 Electrodimerization 146
2.4.3 Electropolymerization 150
2.4.4 Reduction of Carbon Dioxide 151
2.4.5 H-Atom Transfer vs. Electron + Proton Transfer 153
2.4.6 The SRN1 Substitution: Electrodes and Electrons as Catalysts 157
2.4.7 Conformational Changes, Isomerization and Electron Transfer 162
2.5 Redox Properties of Transient Radicals 167
2.5.1 Introduction 167
2.5.2 The Direct Electrochemical Approach 167
2.5.3 Laser Flash Electron Injection 172
2.5.4 Photomodulation Voltammetry 176
2.6 Electrochemistry as a Trigger for Radical Chemistry or for Ionic Chemistry 177
References 179
3 Coupling Between Electron Transfer and Heavy Atom-Bond Breaking and Formation 183