A. N. Kolmogorov
Elements of the Theory of Functions and Functional Analysis
23,99 €
inkl. MwSt.
Versandfertig in über 4 Wochen
12 °P sammeln
A. N. Kolmogorov
Elements of the Theory of Functions and Functional Analysis
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Advanced-level text, now available in a single volume, discusses metric and normed spaces, continuous curves in metric spaces, measure theory, Lebesque intervals, Hilbert space, more. Exercises. 1957 edition.
Andere Kunden interessierten sich auch für
- Thomas BloorThe Functional Analysis of English51,99 €
- D. H. GriffelApplied Functional Analysis22,99 €
- EuclidThe Thirteen Books of the Elements, Vol. 126,99 €
- J. Robert SchriefferTheory Of Superconductivity148,99 €
- Merijn Van De LaarHow to Sleep Like a Caveman13,99 €
- G N WatsonA treatise on the theory of Bessel functions74,99 €
- I M GelfandFunctions and Graphs19,99 €
-
-
-
Advanced-level text, now available in a single volume, discusses metric and normed spaces, continuous curves in metric spaces, measure theory, Lebesque intervals, Hilbert space, more. Exercises. 1957 edition.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Dover Books on Mathematics
- Verlag: Dover Publications Inc.
- Seitenzahl: 288
- Erscheinungstermin: 28. März 2003
- Englisch
- Abmessung: 217mm x 136mm x 17mm
- Gewicht: 314g
- ISBN-13: 9780486406831
- ISBN-10: 0486406830
- Artikelnr.: 21987974
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Dover Books on Mathematics
- Verlag: Dover Publications Inc.
- Seitenzahl: 288
- Erscheinungstermin: 28. März 2003
- Englisch
- Abmessung: 217mm x 136mm x 17mm
- Gewicht: 314g
- ISBN-13: 9780486406831
- ISBN-10: 0486406830
- Artikelnr.: 21987974
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface Translator's Note CHAPTER I FUNDAMENTALS OF SET THEORY 1. The
Concept of Set. Operations on Sets 2. Finite and Infinite Sets.
Denumerability 3. Equivalence of Sets 4. The Nondenumerability of the Set
of Real Numbers 5. The Concept of Cardinal Number 6. Partition into Classes
7. Mappings of Sets. General Concept of Function CHAPTER II METRIC SPACES
8. Definition and Examples of Metric Spaces 9. Convergence of Sequences.
Limit Points 10. Open and Closed Sets 11. Open and Closed Sets on the Real
Line 12. Continuous Mappings. Homeomorphism. Isometry 13. Complete Metric
Spaces 14. The Principle of Contraction Mappings and its Applications 15.
Applications of the Principle of Contraction Mappings in Analysis 16.
Compact Sets in Metric Spaces 17. Arzelà's Theorem and its Applications 18.
Compacta 19. Real Functions in Metric Spaces 20. Continuous Curves in
Metric Spaces CHAPTER III NORMED LINEAR SPACES 21. Definition and Examples
of Normed Linear Spaces 22. Convex Sets in Normed Linear Spaces 23. Linear
Functionals 24. The Conjugate Space 25. Extension of Linear Functionals 26.
The Second Conjugate Space 27. Weak Convergence 28. Weak Convergence of
Linear Functionals 29. Linear Operators ADDENDUM TO CHAPTER III GENERALIZED
FUNCTIONS CHAPTER IV LINEAR OPERATOR EQUATIONS 30. Spectrum of an Operator.
Resolvents 31. Completely Continuous Operators 32. Linear Operator
Equations. Fredholm's Theorems LIST OF SYMBOLS LIST OF DEFINITIONS LIST OF
THEOREMS BASIC LITERATURE INDEX
Concept of Set. Operations on Sets 2. Finite and Infinite Sets.
Denumerability 3. Equivalence of Sets 4. The Nondenumerability of the Set
of Real Numbers 5. The Concept of Cardinal Number 6. Partition into Classes
7. Mappings of Sets. General Concept of Function CHAPTER II METRIC SPACES
8. Definition and Examples of Metric Spaces 9. Convergence of Sequences.
Limit Points 10. Open and Closed Sets 11. Open and Closed Sets on the Real
Line 12. Continuous Mappings. Homeomorphism. Isometry 13. Complete Metric
Spaces 14. The Principle of Contraction Mappings and its Applications 15.
Applications of the Principle of Contraction Mappings in Analysis 16.
Compact Sets in Metric Spaces 17. Arzelà's Theorem and its Applications 18.
Compacta 19. Real Functions in Metric Spaces 20. Continuous Curves in
Metric Spaces CHAPTER III NORMED LINEAR SPACES 21. Definition and Examples
of Normed Linear Spaces 22. Convex Sets in Normed Linear Spaces 23. Linear
Functionals 24. The Conjugate Space 25. Extension of Linear Functionals 26.
The Second Conjugate Space 27. Weak Convergence 28. Weak Convergence of
Linear Functionals 29. Linear Operators ADDENDUM TO CHAPTER III GENERALIZED
FUNCTIONS CHAPTER IV LINEAR OPERATOR EQUATIONS 30. Spectrum of an Operator.
Resolvents 31. Completely Continuous Operators 32. Linear Operator
Equations. Fredholm's Theorems LIST OF SYMBOLS LIST OF DEFINITIONS LIST OF
THEOREMS BASIC LITERATURE INDEX
Preface Translator's Note CHAPTER I FUNDAMENTALS OF SET THEORY 1. The
Concept of Set. Operations on Sets 2. Finite and Infinite Sets.
Denumerability 3. Equivalence of Sets 4. The Nondenumerability of the Set
of Real Numbers 5. The Concept of Cardinal Number 6. Partition into Classes
7. Mappings of Sets. General Concept of Function CHAPTER II METRIC SPACES
8. Definition and Examples of Metric Spaces 9. Convergence of Sequences.
Limit Points 10. Open and Closed Sets 11. Open and Closed Sets on the Real
Line 12. Continuous Mappings. Homeomorphism. Isometry 13. Complete Metric
Spaces 14. The Principle of Contraction Mappings and its Applications 15.
Applications of the Principle of Contraction Mappings in Analysis 16.
Compact Sets in Metric Spaces 17. Arzelà's Theorem and its Applications 18.
Compacta 19. Real Functions in Metric Spaces 20. Continuous Curves in
Metric Spaces CHAPTER III NORMED LINEAR SPACES 21. Definition and Examples
of Normed Linear Spaces 22. Convex Sets in Normed Linear Spaces 23. Linear
Functionals 24. The Conjugate Space 25. Extension of Linear Functionals 26.
The Second Conjugate Space 27. Weak Convergence 28. Weak Convergence of
Linear Functionals 29. Linear Operators ADDENDUM TO CHAPTER III GENERALIZED
FUNCTIONS CHAPTER IV LINEAR OPERATOR EQUATIONS 30. Spectrum of an Operator.
Resolvents 31. Completely Continuous Operators 32. Linear Operator
Equations. Fredholm's Theorems LIST OF SYMBOLS LIST OF DEFINITIONS LIST OF
THEOREMS BASIC LITERATURE INDEX
Concept of Set. Operations on Sets 2. Finite and Infinite Sets.
Denumerability 3. Equivalence of Sets 4. The Nondenumerability of the Set
of Real Numbers 5. The Concept of Cardinal Number 6. Partition into Classes
7. Mappings of Sets. General Concept of Function CHAPTER II METRIC SPACES
8. Definition and Examples of Metric Spaces 9. Convergence of Sequences.
Limit Points 10. Open and Closed Sets 11. Open and Closed Sets on the Real
Line 12. Continuous Mappings. Homeomorphism. Isometry 13. Complete Metric
Spaces 14. The Principle of Contraction Mappings and its Applications 15.
Applications of the Principle of Contraction Mappings in Analysis 16.
Compact Sets in Metric Spaces 17. Arzelà's Theorem and its Applications 18.
Compacta 19. Real Functions in Metric Spaces 20. Continuous Curves in
Metric Spaces CHAPTER III NORMED LINEAR SPACES 21. Definition and Examples
of Normed Linear Spaces 22. Convex Sets in Normed Linear Spaces 23. Linear
Functionals 24. The Conjugate Space 25. Extension of Linear Functionals 26.
The Second Conjugate Space 27. Weak Convergence 28. Weak Convergence of
Linear Functionals 29. Linear Operators ADDENDUM TO CHAPTER III GENERALIZED
FUNCTIONS CHAPTER IV LINEAR OPERATOR EQUATIONS 30. Spectrum of an Operator.
Resolvents 31. Completely Continuous Operators 32. Linear Operator
Equations. Fredholm's Theorems LIST OF SYMBOLS LIST OF DEFINITIONS LIST OF
THEOREMS BASIC LITERATURE INDEX