A thorough guide to elliptic functions and modular forms that demonstrates the relevance and usefulness of historical sources.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Ranjan Roy is the Huffer Professor of Mathematics and Astronomy at Beloit College, Wisconsin, and has published papers in differential equations, fluid mechanics, complex analysis, and the development of mathematics. He received the Allendoerfer Prize, the Wisconsin MAA teaching award, and the MAA Haimo Award for Distinguished Mathematics Teaching, and was twice named Teacher of the Year at Beloit College. He is a co-author of three chapters in the NIST Handbook of Mathematical Functions, of Special Functions (with Andrews and Askey, Cambridge, 2010), and the author of Sources in the Development of Mathematics (Cambridge, 2011).
Inhaltsangabe
1. The basic modular forms 2. Gauss's contributions to modular forms 3. Abel and Jacobi on elliptic functions 4. Eisenstein and Hurwitz 5. Hermite's transformation of theta functions 6. Complex variables and elliptic functions 7. Hypergeometric functions 8. Dedekind's paper on modular functions 9. The n function and Dedekind sums 10. Modular forms and invariant theory 11. The modular and multiplier equations 12. The theory of modular forms as reworked by Hurwitz 13. Ramanujan's Euler products and modular forms 14. Dirichlet series and modular forms 15. Sums of squares 16. The Hecke operators.
1. The basic modular forms 2. Gauss's contributions to modular forms 3. Abel and Jacobi on elliptic functions 4. Eisenstein and Hurwitz 5. Hermite's transformation of theta functions 6. Complex variables and elliptic functions 7. Hypergeometric functions 8. Dedekind's paper on modular functions 9. The n function and Dedekind sums 10. Modular forms and invariant theory 11. The modular and multiplier equations 12. The theory of modular forms as reworked by Hurwitz 13. Ramanujan's Euler products and modular forms 14. Dirichlet series and modular forms 15. Sums of squares 16. The Hecke operators.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497