Emerging Photovoltaic Materials
Silicon and Beyond
Herausgeber: Kurinec, Santosh K
Emerging Photovoltaic Materials
Silicon and Beyond
Herausgeber: Kurinec, Santosh K
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This cutting-edge book focuses on recent developments in emerging 4G photovoltaic materials that leads the way to continuous technological developments in achieving higher solar PV module efficiencies with improved manufacturing processes. Emerging Photovoltaic Materials is divided into 6 parts with 19 chapters from world class researchers. Part 1 examines silicon photovoltaics with chapters on the continuous Czochralski (CZ) process to produce single crystalline silicon; the development of silicon-based materials for advanced solar cells; and the recycling routes for silicon PV modules used…mehr
Andere Kunden interessierten sich auch für
- Advanced Photovoltaic Materials194,99 €
- Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems121,99 €
- Nanostructured Semiconductors and Nanotechnology: Volume 155187,99 €
- Tayyab I SuratwalaMaterials Science and Technology of Optical Fabrication168,99 €
- Ernest RabinowiczFriction and Wear of Materials200,99 €
- Jack A CollinsFailure of Materials in Mechanical Design279,99 €
- R N KumarAdhesives for Wood and Lignocellulosic Materials258,99 €
-
-
-
This cutting-edge book focuses on recent developments in emerging 4G photovoltaic materials that leads the way to continuous technological developments in achieving higher solar PV module efficiencies with improved manufacturing processes. Emerging Photovoltaic Materials is divided into 6 parts with 19 chapters from world class researchers. Part 1 examines silicon photovoltaics with chapters on the continuous Czochralski (CZ) process to produce single crystalline silicon; the development of silicon-based materials for advanced solar cells; and the recycling routes for silicon PV modules used to recover valuable materials such as silver, copper, aluminum, and high-grade silicon. Part 2 consists of five chapters dedicated to emerging new PV materials with chapters on the fundamentals of ferroelectricity applied to PV; the emerging cubic tin-based chalcogenides (SnSe, SnS, and SnTe); the effect of doping of TiO2 nanoparticles with Cu, Al and Tm on the photocatalytic activity of dye-sensitized solar cells; an in-depth phenomenological approach to the photovoltaic effect in multiferroics; the growth of multinary transparent conducting oxides from the Zn-Sn-In-Ga oxide system for application as transparent conductors in photovoltaics. Part 3 is dedicated to a comprehensive review of perovskite solar cells as well as the low and high doping of MAPbI3 perovskite in Pb2+ sites with various bivalent cations. Part 4 comprises chapters on organic photovoltaics (OPV) including applications with PECVD; heterojunction energetics and open circuit voltage in OPV; a review of crystalline, thin-film and earth-abundant PV materials; and the principles of designing organic materials with high dielectric constants. Part 5 ranges from quantum dot photovoltaics to novel nanomaterials and nanoprocessing used to achieve thin films; carbon nanomaterials employed in new architectures using dye- sensitized solar cells (DSSC), nanotube-Si heterojunction and perovskite cells; the fundamentals involved in the operation of quantum dot solar cells and the prevailing synthesis of QD-HIT and QD-sensitized solar cells; near-infrared (NIR) responsive hybrid QD/perovskite solar cells. Part 6 concludes the book with chapters on concentrator photovoltaics and the evaluation of panels under the given climatic conditions using PVsyst simulation software and incorporating it into the site-specific design of a photovoltaic system. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including nanotechnology, semiconductor engineering, physics, chemistry, materials science, biomedical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 828
- Erscheinungstermin: 18. Dezember 2018
- Englisch
- Abmessung: 235mm x 157mm x 48mm
- Gewicht: 1323g
- ISBN-13: 9781119407546
- ISBN-10: 1119407540
- Artikelnr.: 48743221
- Verlag: Wiley
- Seitenzahl: 828
- Erscheinungstermin: 18. Dezember 2018
- Englisch
- Abmessung: 235mm x 157mm x 48mm
- Gewicht: 1323g
- ISBN-13: 9781119407546
- ISBN-10: 1119407540
- Artikelnr.: 48743221
Santosh K. Kurinec is a Professor of Electrical & Microelectronic Engineering at Rochester Institute of Technology (RIT), NY, USA. She received her PhD degree in Physics from the University of Delhi, India. She worked as postdoc at University of Florida and later faculty at Florida A&M/Florida State University College of Engineering prior to joining RIT. She is a Fellow of IEEE, received the 2012 IEEE Technical Field Award and was inducted in the International Women in Technology (WiTi) Hall of Fame in 2018. Her current research activities include photovoltaics, advanced integrated circuit materials, devices and processes.
Preface xxi Part 1 Silicon Photovoltaics 1 1 Emergence of Continuous Czochralski (CCZ) Growth for Monocrystalline Silicon Photovoltaics 3 Santosh K. Kurinec, Charles Bopp and Han Xu 1.1 Introduction 4 1.1.1 The Czochralski (CZ) Process 5 1.1.2 Continuous Czochralski Process (CCZ) 11 1.2 Continuous Czochralski Process Implementations 13 1.3 Solar Cells Fabricated Using CCZ Ingots 15 1.3.1 n-Type Mono-Si High-Efficiency Cells 15 1.3.2 Gallium-Doped p-Type Silicon Solar Cells 17 1.4 Conclusions 19 References 19 2 Materials Chemistry and Physics for Low-Cost Silicon Photovoltaics 23 Tingting Jiang and George Z. Chen 2.1 Introduction 24 2.2 Crystalline Silicon in Traditional/Classic Solar Cells 26 2.2.1 Manufacturing of Silicon Solar Cell 26 2.2.2 Efficiency Loss in Silicon Solar Cell 29 2.2.3 New Strategies for the Silicon Solar Cell 32 2.3 Low-Cost Crystalline Silicon 33 2.3.1 Metallurgical Silicon 33 2.3.2 Upgraded Metallurgical-Grade Silicon 33 2.3.2.1 Properties of Upgraded Metallurgical-Grade Silicon 34 2.3.2.2 Production of Upgraded Metallurgical-Grade Silicon 35 2.3.2.3 Development of Upgraded Metallurgical-Grade Silicon Solar Cells 36 2.3.3 High-Performance Multicrystalline Silicon 37 2.3.3.1 Crystal Growth 37 2.3.3.2 Material Properties of High-Performance Multicrystalline Silicon 39 2.3.3.3 Solar Cell Based on High-Performance Multicrystalline Silicon 40 2.4 Advanced p-Type Silicon-in Passivated Emitter and Rear Cell (PERC) 41 2.4.1 Passivated Emitter Solar Cells 41 2.4.1.1 Passivated Emitter Solar Cell (PESC) 41 2.4.1.2 Passivated Emitter and Rear Cell 42 2.4.1.3 Passivated Emitter, Rear Locally Diffused Solar Cells 43 2.4.1.4 Passivated Emitter, Rear Totally Diffused Solar Cells 44 2.4.2 Surface Passivation 45 2.5 Advanced n-Type Silicon 46 2.5.1 Interdigitated Back Contact (IBC) Solar Cell 47 2.5.2 Silicon Heterojunction (SHJ) Solar Cells 50 2.5.2.1 The Device Structure and the Advantages of HIT Solar Cells 51 2.5.2.2 Strategies of Achieving High-Efficiency HIT Solar Cell 52 2.6 Conclusion 53 References 54 3 Recycling Crystalline Silicon Photovoltaic Modules 61 Pablo Dias and Hugo Veit 3.1 Waste Electrical and Electronic Equipment 62 3.2 Photovoltaic Modules 65 3.2.1 First-Generation Photovoltaic Modules 66 3.3 Recyclability of Waste Photovoltaic Modules 69 3.3.1 Frame 70 3.3.2 Superstrate (Front Glass) 71 3.3.3 Metallic Filaments (Busbars) 72 3.3.4 Photovoltaic Cell 73 3.3.5 Polymers 74 3.3.6 Recyclability Summary 75 3.4 Separation and Recovery of Materials The Recycling Process 76 3.4.1 Mechanical and Physical Processes 76 3.4.1.1 Shredding 77 3.4.1.2 Sieving 77 3.4.1.3 Density Separation 79 3.4.1.4 Manual Separation 82 3.4.1.5 Electrostatic Separation 82 3.4.2 Thermal Processes-Polymers 84 3.4.3 Separation Using Organic Solvents 86 3.4.4 Pyrometallurgy 90 3.4.5 Hydrometallurgy 90 3.4.6 Electrometallurgy 93 3.5 New Trends in the Recycling Processes 94 References 98 Part 2 Emerging Photovoltaic Materials 103 4 Photovoltaics in Ferroelectric Materials Origin, Challenges and Opportunities 105 Charles Paillard, Grégory Geneste, Laurent Bellaiche, Jens Kreisel, Marvin Alexe and Brahim Dkhil 4.1 Physics of the Photovoltaic Effect in Ferroelectrics 106 4.1.1 Conventional Photovoltaic Technologies 106 4.1.1.1 The p-n Junction 106 4.1.1.2 The Shockley-Queisser Limit 109 4.1.2 Mechanisms of the Photovoltaic Effect in Ferroelectric Materials 110 4.1.2.1 The Bulk Photovoltaic Effect 110 4.1.2.2 Barrier Effects 118 4.2 Opportunities and Challenges of Photoferroelectrics 123 4.2.1 To Switch or not to Switch 124 4.2.1.1 Switchability 124 4.2.1.2 Influence of Defects 125 4.2.2 The Bandgap Problem 127 4.2.3 Application of Light-Induced Effects in Ferroelectrics Beyond Solar Cells 129 4.2.3.1 Photovoltaics and ICTs 130 4.2.3.2 Photo-Induced Strain Toward Optically Controlled Actuators 130 4.2.3.3 Photochemistry for Clean Energy and Environment 131 4.3 Conclusions 133 Acknowledgements 134 References 134 5 Tin-Based Novel Cubic Chalcogenides A New Paradigm for Photovoltaic Research 141 Sajid Ur Rehman, Faheem K. Butt, Zeeshan Tariq and Chuanbo Li 5.1 Introduction 142 5.2 Cubic Tin Sulfide (
-SnS) 145 5.2.1 Application
-SnS in Solar Cells 145 5.2.2 Application of
-SnS in Optical Devices 147 5.3 Cubic Tin Selenide (
-SnSe) 153 5.3.1 Application of
-SnSe in Solar Cells 153 5.3.2 Application of
-SnSe in Optical Devices 154 5.4 Cubic Tin Telluride (
-SnTe) 157 5.4.1 Application of
-SnTe in Optical Devices 158 5.5 Conclusion 160 Acknowledgement 160 References 161 6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165 Antonio Sánchez-Coronilla, Javier Navas, Elisa I. Martín, Teresa Aguilar, Juan Jesús Gallardo, Desireé de los Santos, Rodrigo Alcántara and Concha Fernández-Lorenzo 6.1 Introduction 166 6.2 Materials and Methods 167 6.2.1 Experimental 167 6.2.2 Computational Framework 169 6.3 Cu-TiO2 Doping 170 6.3.1 Photovoltaics of the DSSCs 175 6.4 Al-TiO2 Doping 177 6.5 Tm-TiO2 Doping 181 6.5.1 Photovoltaic Characterization 184 6.5.2 Photocatalytic Activity 186 6.6 Conclusions 187 References 189 7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195 Bruno Mettout and Pierre Tolédano 7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196 7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197 7.3 Response Functions under Linearly Polarized Light 199 7.3.1 Mean Symmetry of the Light Beam 199 7.3.2 Response Functions 202 7.3.2.1 Achiral and Nonmagnetic Materials 202 7.3.2.2 Chiral and Magnetic Materials 205 7.4 Selection Procedures 206 7.4.1 External Selection 206 7.4.2 Internal Selection 208 7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210 7.5.1 Second-Order Photovoltaic Effect 210 7.5.2 Photovoltaic Effects in LiNbO3 212 7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215 7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216 7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218 7.6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218 7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220 7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224 7.7.1 Photo-Magnetoelectric Effects 224 7.7.2 Photovoltaic Effects in BiFeO3 226 7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227 7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229 7.8.1 The Photorefractive Effect 230 7.8.2 The Photo-Hall Effect 231 7.9 Summary and Conclusion 234 Acknowledgement 235 References 235 8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239 Peediyekkal Jayaram 8.1 Introduction 239 8.2 Multication Film Growth and Analysis 243 8.3 Structural Analysis 244 8.4 Raman Spectra 247 8.5 Surface Morphology (AFM) 248 8.6 Optical Properties UV-Vis Transmittance Spectra 248 8.7 Electrical Properties 253 8.8 Conclusion 257 References 258 Part 3 Perovskite Solar Cells 261 9 Perovskite Solar Cells Promises and Challenges 263 Qiong Wang and Antonio Abate 9.1 The Scientific and Technological Background 264 9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264 9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266 9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269 9.2 The Fast Development of PSCs 270 9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271 9.2.1.1 Optical Properties 272 9.2.1.2 Electronic Properties 276 9.2.2 Composition Adjustment of Perovskite 288 9.2.2.1 Mixed Halides 288 9.2.2.2 Multi-Cations 292 9.2.2.3 Phase Segregation 297 9.2.3 Versatile Deposition Methods of Perovskite Film 297 9.2.3.1 Solution-Processed Methods 298 9.2.3.2 Vapor Deposition Methods 306 9.2.4 Charge Selective Contacts in PSCs 308 9.2.4.1 Electron Selective Contacts 309 9.2.4.2 Hole Selective Contacts 311 9.2.5 Evaluation of PSCs 315 9.2.5.1 J-V curve 315 9.2.5.2 Maximum Power Point Tracking (MPPT) 316 9.2.6 The Systematic Understanding of PSCs 318 9.2.6.1 Moisture Vulnerability of Perovskite Materials 318 9.2.6.2 The Role of Grain Boundaries 318 9.2.6.3 Ion Migration and Hysteresis 322 9.2.6.4 Interface/Bulk Defects and Passivation 324 9.2.7 PSCs in a Tandem 328 9.2.7.1 Structures of Perovskite Tandem Cells 328 9.2.7.2 Transparent Contacts and Recombination Contacts 330 9.3 Remaining Challenges and Prospects of PSCs 331 9.3.1 Lead-Free PSCs 331 9.3.2 Stable and Cheap Contact Materials 336 9.3.3 Strategies toward Stable PSCs 338 9.3.3.1 Against Moisture 338 9.3.3.2 Against UV Light 339 9.3.3.3 Against Heat 341 9.3.4 Large-Area Production of Highly Efficient PSCs 342 References 345 10 Organic-Inorganic Hybrid Perovskite, CH3NH3PbI3 Modifications in Pb Sites from Experimental and Theoretical Perspectives 357 Javier Navas, Antonio Sánchez-Coronilla, Juan Jesús Gallardo, Jose Carlos Piñero, Teresa Aguilar, Elisa I. Martín, Rodrigo Alcántara, Concha Fernández-Lorenzo and Joaquin Martín-Calleja 10.1 Introduction 358 10.2 Low Doping on Pb Sites 359 10.2.1 Materials and Methods 359 10.2.1.1 Experimental 359 10.2.1.2 Computational Details 361 10.2.2 Properties of the Perovskite Prepared 362 10.2.2.1 XRD 362 10.2.2.2 Diffuse Reflectance UV-Vis Spectroscopy 365 10.2.2.3 X-Ray Photoelectron Spectroscopy 366 10.2.2.4 SEM and Cathodoluminescence 369 10.2.3 Theoretical Analysis 371 10.2.3.1 Structure and Local Geometry 371 10.2.3.2 DOS and PDOS Analysis 372 10.2.3.3 ELF Analysis 376 10.3 High Doping on Pb Sites 378 10.3.1 Properties of the Perovskite Prepared 379 10.3.1.1 XRD 379 10.3.1.2 Diffuse Reflectance UV-Vis Spectroscopy 384 10.3.1.3 X-Ray Photoelectron Spectroscopy 386 10.3.2 Theoretical Analysis 388 10.3.2.1 Structure and Local Geometry 388 10.3.2.2 Electron Localization Function 391 10.3.2.3 DOS and PDOS Analysis 393 10.4 Conclusions 397 References 397 Part 4 Organic Solar Cells 401 11 Increasing the Dielectric Constant of Organic Materials for Photovoltaics 403 Viktor Ivasyshyn, Gang Ye, Sylvia Rousseva, Jan C. Hummelen and Ryan C. Chiechi 11.1 Introduction 404 11.2 Increasing the Dielectric Constant 415 11.2.1 Methodology of Dielectric Constant Measurement 415 11.2.2 High Dielectric Constant Materials 421 11.2.2.1 High Dielectric Constant Donor Materials 422 11.2.2.2 High Dielectric Constant Acceptor Materials 429 11.3 Conclusions and Outlook 435 References 436 12 Recent Developments in Dye-Sensitized Solar Cells and Potential Applications 443 Devender Singh, Raman Kumar Saini and Shri Bhagwan 12.1 Solar Energy and Solar Cells 444 12.2 Types of Solar Cells 445 12.2.1 First-Generation Photovoltaic Cells 445 12.2.1.1 Silicon Single-Crystal-Based Solar Cells 445 12.2.1.2 Polycrystalline Silicon Based Solar Cells 445 12.2.1.3 Gallium Arsenide (GaAs)-Based Solar Cells 447 12.2.2 Second-Generation Photovoltaic Cells 447 12.2.2.1 Amorphous Silicon (a-Si)-Based Solar Cells 447 12.2.2.2 Cadmium Telluride (CdTe)-Based Solar Cells 448 12.2.2.3 Copper Indium Diselenide (CuInSe2, or CIS)- Based Solar Cells 448 12.2.3 Third-Generation Photovoltaic Cells 449 12.2.3.1 Copper Zinc Tin Sulfide (CZTS) and (Its Derivatives) CZTSSe and CZTSe Solar Cells 449 12.2.3.2 Organic Solar Cells 449 12.2.3.3 Perovskite Solar Cells 450 12.2.3.4 Quantum Dot Solar Cell 450 12.3 Dye-Sensitized Solar Cells (DSSCs) 450 12.4 Operation of DSSCs 452 12.4.1 Working System of DSSCs 454 12.5 Fabrication of DSSCs 455 12.5.1 Substrate Selection and Preparation 456 12.5.1.1 Cutting of the Substrate 456 12.5.1.2 Cleaning of the Substrate 456 12.5.1.3 Masking of the Substrate 456 12.5.2 Film Deposition on Substrate 456 12.5.2.1 Preparation of TiO2 Paste 459 12.5.2.2 Depositing the TiO2 Layer on the Glass Plate 460 12.5.3 Dye Impregnation on the Electrode 460 12.5.4 Preparation of Counter Electrode 460 12.6 Various Materials Used as Essential Components of DSSCs 461 12.6.1 Transparent Conducting Substrate 461 12.6.2 Photoelectrodes 462 12.6.2.1 Titanium Oxide (TiO2) 462 12.6.2.2 Zinc Oxide (ZnO) 463 12.6.2.3 Niobium Pentoxide (Nb2O5) 464 12.6.2.4 Ternary Photoelectrode Materials 465 12.6.2.5 Other Metal Oxides 465 12.6.3 Photosensitizers 466 12.6.3.1 Metal Complexes as Sensitizers 467 12.6.4 Electrolytes 471 12.6.4.1 Liquid Electrolytes 472 12.6.4.2 Solid-State Electrolytes 473 12.6.4.3 Quasi-Solid Electrolyte 474 12.6.5 Counter Electrodes 474 12.6.5.1 Platinized Conducting Glass 474 12.6.5.2 Carbon Materials 474 12.6.5.3 Conducting Polymers 475 12.7 Advantages and Applications of DSSC 475 12.8 Future Prospect of DSSC 476 12.9 Conclusions 476 References 477 13 Heterojunction Energetics and Open-Circuit Voltages of Organic Photovoltaic Cells 487 Peicheng Li and Zheng-Hong Lu 13.1 Introduction 487 13.2 Ultraviolet Photoemission Spectroscopy 490 13.3 Energy Level Alignment at Heterojunction Interfaces 493 13.3.1 Schottky Barrier, Interfacial Dipole, and Slope Parameter 493 13.3.2 Interfacial Dipole Theory 495 13.3.3 Mapping Energy Level Alignment at Heterojunction Interface 497 13.4 Open-Circuit Voltage of Organic Photovoltaic Cell 499 13.4.1 Two-Diode Model 499 13.4.2 Quasi Fermi Level Model 501 13.4.3 Chemical Equilibrium Model 503 13.4.4 Kinetic Hopping Model 504 References 508 14 Plasma-Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices 511 Andrey Kosarev, Ismael Cosme, Svetlana Mansurova, Dmitriy Andronikov, Alexey Abramov and Eugeny Terukov 14.1 Introduction 512 14.2 Experimental 513 14.2.1 Fabrication of PECVD Materials 513 14.2.2 Fabrication of Organic Materials 514 14.2.3 Configurations and Fabrication of Device Structures 516 14.2.4 Characterization of Materials 516 14.2.5 Characterization of Device Structures 521 14.3 Material Results 522 14.3.1 Structure and Composition 522 14.3.2 Optical Properties 526 14.3.3 Electrical Properties 529 14.4 Results for Devices 537 14.4.1 Devices Based on PECVD Materials 537 14.4.2 Devices Based on Organic Materials 538 14.4.3 Hybrid Devices Based on PECVD-Polymer Materials 540 14.4.4 Hybrid Devices Using Crystalline Semicinductors, Non-Crystalline PECVD, and Organic Materials (HJT-OS Structures) 543 14.5 Outlook 546 Acknowledgment 546 References 546 Part 5 Nano-Photovoltaics 551 15 Use of Carbon Nanotubes (CNTs) in Third-Generation Solar Cells 553 LePing Yu, Munkhbayar Batmunkh, Cameron Shearer and Joseph G. Shapter 15.1 Introduction 554 15.1.1 Energy Issues and Potential Solutions 554 15.1.2 Categories of Photovoltaic Devices and Their Development 554 15.2 Carbon Nanotubes (CNTs) 556 15.3 Transparent Conducting Electrodes (TCEs) 556 15.3.1 ITO and FTO 556 15.3.2 CNTs for TCEs 557 15.4 Dye-Sensitized Solar Cells (DSSCs) 563 15.4.1 CNTs-TCFs for DSSCs 563 15.4.2 Semiconducting Layers 565 15.4.2.1 Nanostructured TiO2 Materials 565 15.4.2.2 Semiconducting Layers with CNTs 566 15.4.3 Catalyst Layers 570 15.4.3.1 Platinum (Pt) and Other Catalysts 570 15.5 CNTs in Perovskite Solar Cells 572 15.6 Carbon Nanotube-Silicon (CNT-Si) or Nanotube-Silicon Heterojunction (NSH) Solar Cells 575 15.6.1 Working Mechanism 575 15.6.2 Development of Si-CNT Devices 576 15.6.3 Origin of Photocurrent 577 15.6.4 Effect of the Number of CNT Walls 578 15.6.5 Effect of the Electronic Type of CNTs 579 15.6.6 Effect of CNT Alignment in the Electrode 579 15.6.7 Effect of the Transmittance/Thickness of CNT Films 580 15.6.8 Effect of Doping 580 15.6.9 Intentional Addition of Silicon Oxide Layer 581 15.6.10 Enhancement of Light Absorption 582 15.6.11 Application of Conductive Polymers 584 15.6.12 Discussion 584 15.7 Outlook and Conclusion 585 References 586 16 Quantum Dot Solar Cells 611 Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia and Lidong Sun 16.1 Introduction 612 16.2 Quantum Dots and Their Properties 612 16.2.1 Fundamental Concepts 612 16.2.2 Size-Dependent Quantum Confinement Effect 613 16.2.3 Multiple Exciton Generation Effect 614 16.2.4 The Kondo Effect 616 16.2.5 Applications 617 16.3 Synthetic Methods for Quantum Dots 618 16.3.1 Hot Injection 618 16.3.1.1 Theoretical Evaluation of Nucleation and Growth 619 16.3.1.2 Influence Factors 621 16.3.1.3 Features 623 16.3.2 Chemical Bath Deposition 624 16.3.2.1 Theoretical Evaluation of the CBD Method 625 16.3.2.2 Influence Factors 625 16.3.2.3 Features 627 16.3.3 Successive Ionic Layer Adsorption and Reaction 628 16.3.3.1 Theoretical Evaluation of SILAR Method 629 16.3.3.2 Influence Factors 630 16.3.3.3 Features 632 16.4 Quantum Dot Solar Cells 633 16.4.1 Schottky Junction Solar Cells 633 16.4.1.1 Device Structure 633 16.4.1.2 Preparation Route 635 16.4.1.3 Materials Selection 635 16.4.1.4 Photovoltaic Performance 636 16.4.2 Depleted Heterojunction Solar Cells 637 16.4.2.1 Device Structure 637 16.4.2.2 Preparation Route 638 16.4.2.3 Materials Selection 639 16.4.2.4 Photovoltaic Performance 640 16.4.3 Quantum-Dot-Sensitized Solar Cells 641 16.4.3.1 Device Structure 641 16.4.3.2 Preparation Route 642 16.4.3.3 Materials Selection 643 16.4.3.4 Photovoltaic Performance 644 16.4 Challenges and Perspectives 645 References 646 17 Near-Infrared Responsive Quantum Dot Photovoltaics Progress, Challenges, and Perspectives 659 Ru Zhou, Jun Xu and Jinzhang Xu 17.1 Introduction 660 17.2 Physical and Chemical Properties 662 17.2.1 Multiple Exciton Generation 662 17.2.2 Quantum Size Effect 663 17.2.3 Other Features 664 17.3 Materials and Film Processing 665 17.3.1 In Situ Strategy 665 17.3.2 Ex Situ Strategy 666 17.3.3 A Comparison between In Situ and Ex Situ 667 17.4 NIR Responsive QDs and Photovoltaic Performance 669 17.4.1 Binary Lead Chalcogenides 669 17.4.2 Binary Silver Chalcogenides 674 17.4.3 Ternary Indium-Based Chalcogenides 676 17.4.4 Ternary and Quaternary Alloyed Compounds 678 17.5 Strategies for Performance Enhancement 682 17.5.1 Light Management 682 17.5.1.1 Nanophotonic Structuring 682 17.5.1.2 Plasmonic Enhancement 683 17.5.2 Carrier Management 684 17.5.2.1 Band Structure Tailoring 684 17.5.2.2 Surface Engineering 687 17.5.2.3 Charge Collection Optimizing 692 17.6 New Concept Solar Cells 692 17.6.1 Multiple-Junction CQD Solar Cells 693 17.6.2 Flexible Solar Cells 694 17.6.3 Semitransparent Solar Cells 694 17.6.4 QD/Perovskite Hybrid Solar Cells 696 17.7 Conclusions and Perspectives 699 Acknowledgments 701 References 701 Part 6 Concentrator Photovoltaics and Analysis Models 719 18 Dense-Array Concentrator Photovoltaic System 721 Kok-Keong Chong, Chee-Woon Wong, Tiong-Keat Yew, Ming-Hui Tan and Woei-Chong Tan 18.1 Introduction 722 18.2 Primary Concentrator Non-Imaging Dish Concentrator 722 18.2.1 Geometry of Non-Imaging Dish Concentrator (NIDC) 723 18.2.2 Methodology of Designing NIDC Geometry 726 18.2.3 Coordinate Transformation of Facet Mirror 728 18.2.4 Computational Algorithm 730 18.3 Secondary Concentrator An Array of Crossed Compound Parabolic Concentrator (CCPC) Lenses 733 18.4 Concentrator Photovoltaic Module 740 18.5 Prototype of Dense-Array Concentrator Photovoltaic System (DACPV) 742 18.6 Optical Efficiency of the CCPC Lens 744 18.7 Experimental Study of Electrical Performance 750 18.7.1 Current Measurement Circuit 754 18.8 Cost Estimation of the Dense-Array Concentrator Photovoltaic System Using Two-Stage Non-Imaging Concentrators 757 18.9 Conclusion 758 Acknowledgments 759 References 760 19 Solar Radiation Analysis Model and PVsyst Simulation for Photovoltaic System Design 763 Figen Balo and Lutfu S. Sua 19.1 Introduction 764 19.1.1 Solar Energy in Turkey 764 19.1.2 Climate, Solar Energy Potential, and Electric Production in Erzincan 766 19.2 Data Analysis Model for Solar Radiation Intensity Calculation 768 19.2.1 Horizontal Surface 768 19.2.1.1 Daily Total Solar Radiation 768 19.2.1.2 Daily Diffuse Solar Radiation 768 19.2.1.3 Momentary Total Solar Radiation 769 19.2.1.4 Momentary Diffuse and Direct Solar Radiation 769 19.2.2 Calculating Solar Radiation Intensity on Inclined Surface 770 19.2.2.1 Momentary Direct Solar Radiation 770 19.2.2.2 Momentary Diffuse Solar Radiation 770 19.2.2.3 Reflecting Momentary Solar Radiation 771 19.2.2.4 Total Momentary Solar Radiation 771 19.2.3 Data Analysis and Discussion 771 19.3 PVsyst Simulation for the Solar Farm System Design 777 19.3.1 Methodology 777 19.3.2 Findings Obtained with PVsyst Simulation 781 19.4 Conclusions 783 References 784 Index 787
-SnS) 145 5.2.1 Application
-SnS in Solar Cells 145 5.2.2 Application of
-SnS in Optical Devices 147 5.3 Cubic Tin Selenide (
-SnSe) 153 5.3.1 Application of
-SnSe in Solar Cells 153 5.3.2 Application of
-SnSe in Optical Devices 154 5.4 Cubic Tin Telluride (
-SnTe) 157 5.4.1 Application of
-SnTe in Optical Devices 158 5.5 Conclusion 160 Acknowledgement 160 References 161 6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165 Antonio Sánchez-Coronilla, Javier Navas, Elisa I. Martín, Teresa Aguilar, Juan Jesús Gallardo, Desireé de los Santos, Rodrigo Alcántara and Concha Fernández-Lorenzo 6.1 Introduction 166 6.2 Materials and Methods 167 6.2.1 Experimental 167 6.2.2 Computational Framework 169 6.3 Cu-TiO2 Doping 170 6.3.1 Photovoltaics of the DSSCs 175 6.4 Al-TiO2 Doping 177 6.5 Tm-TiO2 Doping 181 6.5.1 Photovoltaic Characterization 184 6.5.2 Photocatalytic Activity 186 6.6 Conclusions 187 References 189 7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195 Bruno Mettout and Pierre Tolédano 7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196 7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197 7.3 Response Functions under Linearly Polarized Light 199 7.3.1 Mean Symmetry of the Light Beam 199 7.3.2 Response Functions 202 7.3.2.1 Achiral and Nonmagnetic Materials 202 7.3.2.2 Chiral and Magnetic Materials 205 7.4 Selection Procedures 206 7.4.1 External Selection 206 7.4.2 Internal Selection 208 7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210 7.5.1 Second-Order Photovoltaic Effect 210 7.5.2 Photovoltaic Effects in LiNbO3 212 7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215 7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216 7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218 7.6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218 7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220 7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224 7.7.1 Photo-Magnetoelectric Effects 224 7.7.2 Photovoltaic Effects in BiFeO3 226 7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227 7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229 7.8.1 The Photorefractive Effect 230 7.8.2 The Photo-Hall Effect 231 7.9 Summary and Conclusion 234 Acknowledgement 235 References 235 8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239 Peediyekkal Jayaram 8.1 Introduction 239 8.2 Multication Film Growth and Analysis 243 8.3 Structural Analysis 244 8.4 Raman Spectra 247 8.5 Surface Morphology (AFM) 248 8.6 Optical Properties UV-Vis Transmittance Spectra 248 8.7 Electrical Properties 253 8.8 Conclusion 257 References 258 Part 3 Perovskite Solar Cells 261 9 Perovskite Solar Cells Promises and Challenges 263 Qiong Wang and Antonio Abate 9.1 The Scientific and Technological Background 264 9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264 9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266 9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269 9.2 The Fast Development of PSCs 270 9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271 9.2.1.1 Optical Properties 272 9.2.1.2 Electronic Properties 276 9.2.2 Composition Adjustment of Perovskite 288 9.2.2.1 Mixed Halides 288 9.2.2.2 Multi-Cations 292 9.2.2.3 Phase Segregation 297 9.2.3 Versatile Deposition Methods of Perovskite Film 297 9.2.3.1 Solution-Processed Methods 298 9.2.3.2 Vapor Deposition Methods 306 9.2.4 Charge Selective Contacts in PSCs 308 9.2.4.1 Electron Selective Contacts 309 9.2.4.2 Hole Selective Contacts 311 9.2.5 Evaluation of PSCs 315 9.2.5.1 J-V curve 315 9.2.5.2 Maximum Power Point Tracking (MPPT) 316 9.2.6 The Systematic Understanding of PSCs 318 9.2.6.1 Moisture Vulnerability of Perovskite Materials 318 9.2.6.2 The Role of Grain Boundaries 318 9.2.6.3 Ion Migration and Hysteresis 322 9.2.6.4 Interface/Bulk Defects and Passivation 324 9.2.7 PSCs in a Tandem 328 9.2.7.1 Structures of Perovskite Tandem Cells 328 9.2.7.2 Transparent Contacts and Recombination Contacts 330 9.3 Remaining Challenges and Prospects of PSCs 331 9.3.1 Lead-Free PSCs 331 9.3.2 Stable and Cheap Contact Materials 336 9.3.3 Strategies toward Stable PSCs 338 9.3.3.1 Against Moisture 338 9.3.3.2 Against UV Light 339 9.3.3.3 Against Heat 341 9.3.4 Large-Area Production of Highly Efficient PSCs 342 References 345 10 Organic-Inorganic Hybrid Perovskite, CH3NH3PbI3 Modifications in Pb Sites from Experimental and Theoretical Perspectives 357 Javier Navas, Antonio Sánchez-Coronilla, Juan Jesús Gallardo, Jose Carlos Piñero, Teresa Aguilar, Elisa I. Martín, Rodrigo Alcántara, Concha Fernández-Lorenzo and Joaquin Martín-Calleja 10.1 Introduction 358 10.2 Low Doping on Pb Sites 359 10.2.1 Materials and Methods 359 10.2.1.1 Experimental 359 10.2.1.2 Computational Details 361 10.2.2 Properties of the Perovskite Prepared 362 10.2.2.1 XRD 362 10.2.2.2 Diffuse Reflectance UV-Vis Spectroscopy 365 10.2.2.3 X-Ray Photoelectron Spectroscopy 366 10.2.2.4 SEM and Cathodoluminescence 369 10.2.3 Theoretical Analysis 371 10.2.3.1 Structure and Local Geometry 371 10.2.3.2 DOS and PDOS Analysis 372 10.2.3.3 ELF Analysis 376 10.3 High Doping on Pb Sites 378 10.3.1 Properties of the Perovskite Prepared 379 10.3.1.1 XRD 379 10.3.1.2 Diffuse Reflectance UV-Vis Spectroscopy 384 10.3.1.3 X-Ray Photoelectron Spectroscopy 386 10.3.2 Theoretical Analysis 388 10.3.2.1 Structure and Local Geometry 388 10.3.2.2 Electron Localization Function 391 10.3.2.3 DOS and PDOS Analysis 393 10.4 Conclusions 397 References 397 Part 4 Organic Solar Cells 401 11 Increasing the Dielectric Constant of Organic Materials for Photovoltaics 403 Viktor Ivasyshyn, Gang Ye, Sylvia Rousseva, Jan C. Hummelen and Ryan C. Chiechi 11.1 Introduction 404 11.2 Increasing the Dielectric Constant 415 11.2.1 Methodology of Dielectric Constant Measurement 415 11.2.2 High Dielectric Constant Materials 421 11.2.2.1 High Dielectric Constant Donor Materials 422 11.2.2.2 High Dielectric Constant Acceptor Materials 429 11.3 Conclusions and Outlook 435 References 436 12 Recent Developments in Dye-Sensitized Solar Cells and Potential Applications 443 Devender Singh, Raman Kumar Saini and Shri Bhagwan 12.1 Solar Energy and Solar Cells 444 12.2 Types of Solar Cells 445 12.2.1 First-Generation Photovoltaic Cells 445 12.2.1.1 Silicon Single-Crystal-Based Solar Cells 445 12.2.1.2 Polycrystalline Silicon Based Solar Cells 445 12.2.1.3 Gallium Arsenide (GaAs)-Based Solar Cells 447 12.2.2 Second-Generation Photovoltaic Cells 447 12.2.2.1 Amorphous Silicon (a-Si)-Based Solar Cells 447 12.2.2.2 Cadmium Telluride (CdTe)-Based Solar Cells 448 12.2.2.3 Copper Indium Diselenide (CuInSe2, or CIS)- Based Solar Cells 448 12.2.3 Third-Generation Photovoltaic Cells 449 12.2.3.1 Copper Zinc Tin Sulfide (CZTS) and (Its Derivatives) CZTSSe and CZTSe Solar Cells 449 12.2.3.2 Organic Solar Cells 449 12.2.3.3 Perovskite Solar Cells 450 12.2.3.4 Quantum Dot Solar Cell 450 12.3 Dye-Sensitized Solar Cells (DSSCs) 450 12.4 Operation of DSSCs 452 12.4.1 Working System of DSSCs 454 12.5 Fabrication of DSSCs 455 12.5.1 Substrate Selection and Preparation 456 12.5.1.1 Cutting of the Substrate 456 12.5.1.2 Cleaning of the Substrate 456 12.5.1.3 Masking of the Substrate 456 12.5.2 Film Deposition on Substrate 456 12.5.2.1 Preparation of TiO2 Paste 459 12.5.2.2 Depositing the TiO2 Layer on the Glass Plate 460 12.5.3 Dye Impregnation on the Electrode 460 12.5.4 Preparation of Counter Electrode 460 12.6 Various Materials Used as Essential Components of DSSCs 461 12.6.1 Transparent Conducting Substrate 461 12.6.2 Photoelectrodes 462 12.6.2.1 Titanium Oxide (TiO2) 462 12.6.2.2 Zinc Oxide (ZnO) 463 12.6.2.3 Niobium Pentoxide (Nb2O5) 464 12.6.2.4 Ternary Photoelectrode Materials 465 12.6.2.5 Other Metal Oxides 465 12.6.3 Photosensitizers 466 12.6.3.1 Metal Complexes as Sensitizers 467 12.6.4 Electrolytes 471 12.6.4.1 Liquid Electrolytes 472 12.6.4.2 Solid-State Electrolytes 473 12.6.4.3 Quasi-Solid Electrolyte 474 12.6.5 Counter Electrodes 474 12.6.5.1 Platinized Conducting Glass 474 12.6.5.2 Carbon Materials 474 12.6.5.3 Conducting Polymers 475 12.7 Advantages and Applications of DSSC 475 12.8 Future Prospect of DSSC 476 12.9 Conclusions 476 References 477 13 Heterojunction Energetics and Open-Circuit Voltages of Organic Photovoltaic Cells 487 Peicheng Li and Zheng-Hong Lu 13.1 Introduction 487 13.2 Ultraviolet Photoemission Spectroscopy 490 13.3 Energy Level Alignment at Heterojunction Interfaces 493 13.3.1 Schottky Barrier, Interfacial Dipole, and Slope Parameter 493 13.3.2 Interfacial Dipole Theory 495 13.3.3 Mapping Energy Level Alignment at Heterojunction Interface 497 13.4 Open-Circuit Voltage of Organic Photovoltaic Cell 499 13.4.1 Two-Diode Model 499 13.4.2 Quasi Fermi Level Model 501 13.4.3 Chemical Equilibrium Model 503 13.4.4 Kinetic Hopping Model 504 References 508 14 Plasma-Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices 511 Andrey Kosarev, Ismael Cosme, Svetlana Mansurova, Dmitriy Andronikov, Alexey Abramov and Eugeny Terukov 14.1 Introduction 512 14.2 Experimental 513 14.2.1 Fabrication of PECVD Materials 513 14.2.2 Fabrication of Organic Materials 514 14.2.3 Configurations and Fabrication of Device Structures 516 14.2.4 Characterization of Materials 516 14.2.5 Characterization of Device Structures 521 14.3 Material Results 522 14.3.1 Structure and Composition 522 14.3.2 Optical Properties 526 14.3.3 Electrical Properties 529 14.4 Results for Devices 537 14.4.1 Devices Based on PECVD Materials 537 14.4.2 Devices Based on Organic Materials 538 14.4.3 Hybrid Devices Based on PECVD-Polymer Materials 540 14.4.4 Hybrid Devices Using Crystalline Semicinductors, Non-Crystalline PECVD, and Organic Materials (HJT-OS Structures) 543 14.5 Outlook 546 Acknowledgment 546 References 546 Part 5 Nano-Photovoltaics 551 15 Use of Carbon Nanotubes (CNTs) in Third-Generation Solar Cells 553 LePing Yu, Munkhbayar Batmunkh, Cameron Shearer and Joseph G. Shapter 15.1 Introduction 554 15.1.1 Energy Issues and Potential Solutions 554 15.1.2 Categories of Photovoltaic Devices and Their Development 554 15.2 Carbon Nanotubes (CNTs) 556 15.3 Transparent Conducting Electrodes (TCEs) 556 15.3.1 ITO and FTO 556 15.3.2 CNTs for TCEs 557 15.4 Dye-Sensitized Solar Cells (DSSCs) 563 15.4.1 CNTs-TCFs for DSSCs 563 15.4.2 Semiconducting Layers 565 15.4.2.1 Nanostructured TiO2 Materials 565 15.4.2.2 Semiconducting Layers with CNTs 566 15.4.3 Catalyst Layers 570 15.4.3.1 Platinum (Pt) and Other Catalysts 570 15.5 CNTs in Perovskite Solar Cells 572 15.6 Carbon Nanotube-Silicon (CNT-Si) or Nanotube-Silicon Heterojunction (NSH) Solar Cells 575 15.6.1 Working Mechanism 575 15.6.2 Development of Si-CNT Devices 576 15.6.3 Origin of Photocurrent 577 15.6.4 Effect of the Number of CNT Walls 578 15.6.5 Effect of the Electronic Type of CNTs 579 15.6.6 Effect of CNT Alignment in the Electrode 579 15.6.7 Effect of the Transmittance/Thickness of CNT Films 580 15.6.8 Effect of Doping 580 15.6.9 Intentional Addition of Silicon Oxide Layer 581 15.6.10 Enhancement of Light Absorption 582 15.6.11 Application of Conductive Polymers 584 15.6.12 Discussion 584 15.7 Outlook and Conclusion 585 References 586 16 Quantum Dot Solar Cells 611 Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia and Lidong Sun 16.1 Introduction 612 16.2 Quantum Dots and Their Properties 612 16.2.1 Fundamental Concepts 612 16.2.2 Size-Dependent Quantum Confinement Effect 613 16.2.3 Multiple Exciton Generation Effect 614 16.2.4 The Kondo Effect 616 16.2.5 Applications 617 16.3 Synthetic Methods for Quantum Dots 618 16.3.1 Hot Injection 618 16.3.1.1 Theoretical Evaluation of Nucleation and Growth 619 16.3.1.2 Influence Factors 621 16.3.1.3 Features 623 16.3.2 Chemical Bath Deposition 624 16.3.2.1 Theoretical Evaluation of the CBD Method 625 16.3.2.2 Influence Factors 625 16.3.2.3 Features 627 16.3.3 Successive Ionic Layer Adsorption and Reaction 628 16.3.3.1 Theoretical Evaluation of SILAR Method 629 16.3.3.2 Influence Factors 630 16.3.3.3 Features 632 16.4 Quantum Dot Solar Cells 633 16.4.1 Schottky Junction Solar Cells 633 16.4.1.1 Device Structure 633 16.4.1.2 Preparation Route 635 16.4.1.3 Materials Selection 635 16.4.1.4 Photovoltaic Performance 636 16.4.2 Depleted Heterojunction Solar Cells 637 16.4.2.1 Device Structure 637 16.4.2.2 Preparation Route 638 16.4.2.3 Materials Selection 639 16.4.2.4 Photovoltaic Performance 640 16.4.3 Quantum-Dot-Sensitized Solar Cells 641 16.4.3.1 Device Structure 641 16.4.3.2 Preparation Route 642 16.4.3.3 Materials Selection 643 16.4.3.4 Photovoltaic Performance 644 16.4 Challenges and Perspectives 645 References 646 17 Near-Infrared Responsive Quantum Dot Photovoltaics Progress, Challenges, and Perspectives 659 Ru Zhou, Jun Xu and Jinzhang Xu 17.1 Introduction 660 17.2 Physical and Chemical Properties 662 17.2.1 Multiple Exciton Generation 662 17.2.2 Quantum Size Effect 663 17.2.3 Other Features 664 17.3 Materials and Film Processing 665 17.3.1 In Situ Strategy 665 17.3.2 Ex Situ Strategy 666 17.3.3 A Comparison between In Situ and Ex Situ 667 17.4 NIR Responsive QDs and Photovoltaic Performance 669 17.4.1 Binary Lead Chalcogenides 669 17.4.2 Binary Silver Chalcogenides 674 17.4.3 Ternary Indium-Based Chalcogenides 676 17.4.4 Ternary and Quaternary Alloyed Compounds 678 17.5 Strategies for Performance Enhancement 682 17.5.1 Light Management 682 17.5.1.1 Nanophotonic Structuring 682 17.5.1.2 Plasmonic Enhancement 683 17.5.2 Carrier Management 684 17.5.2.1 Band Structure Tailoring 684 17.5.2.2 Surface Engineering 687 17.5.2.3 Charge Collection Optimizing 692 17.6 New Concept Solar Cells 692 17.6.1 Multiple-Junction CQD Solar Cells 693 17.6.2 Flexible Solar Cells 694 17.6.3 Semitransparent Solar Cells 694 17.6.4 QD/Perovskite Hybrid Solar Cells 696 17.7 Conclusions and Perspectives 699 Acknowledgments 701 References 701 Part 6 Concentrator Photovoltaics and Analysis Models 719 18 Dense-Array Concentrator Photovoltaic System 721 Kok-Keong Chong, Chee-Woon Wong, Tiong-Keat Yew, Ming-Hui Tan and Woei-Chong Tan 18.1 Introduction 722 18.2 Primary Concentrator Non-Imaging Dish Concentrator 722 18.2.1 Geometry of Non-Imaging Dish Concentrator (NIDC) 723 18.2.2 Methodology of Designing NIDC Geometry 726 18.2.3 Coordinate Transformation of Facet Mirror 728 18.2.4 Computational Algorithm 730 18.3 Secondary Concentrator An Array of Crossed Compound Parabolic Concentrator (CCPC) Lenses 733 18.4 Concentrator Photovoltaic Module 740 18.5 Prototype of Dense-Array Concentrator Photovoltaic System (DACPV) 742 18.6 Optical Efficiency of the CCPC Lens 744 18.7 Experimental Study of Electrical Performance 750 18.7.1 Current Measurement Circuit 754 18.8 Cost Estimation of the Dense-Array Concentrator Photovoltaic System Using Two-Stage Non-Imaging Concentrators 757 18.9 Conclusion 758 Acknowledgments 759 References 760 19 Solar Radiation Analysis Model and PVsyst Simulation for Photovoltaic System Design 763 Figen Balo and Lutfu S. Sua 19.1 Introduction 764 19.1.1 Solar Energy in Turkey 764 19.1.2 Climate, Solar Energy Potential, and Electric Production in Erzincan 766 19.2 Data Analysis Model for Solar Radiation Intensity Calculation 768 19.2.1 Horizontal Surface 768 19.2.1.1 Daily Total Solar Radiation 768 19.2.1.2 Daily Diffuse Solar Radiation 768 19.2.1.3 Momentary Total Solar Radiation 769 19.2.1.4 Momentary Diffuse and Direct Solar Radiation 769 19.2.2 Calculating Solar Radiation Intensity on Inclined Surface 770 19.2.2.1 Momentary Direct Solar Radiation 770 19.2.2.2 Momentary Diffuse Solar Radiation 770 19.2.2.3 Reflecting Momentary Solar Radiation 771 19.2.2.4 Total Momentary Solar Radiation 771 19.2.3 Data Analysis and Discussion 771 19.3 PVsyst Simulation for the Solar Farm System Design 777 19.3.1 Methodology 777 19.3.2 Findings Obtained with PVsyst Simulation 781 19.4 Conclusions 783 References 784 Index 787
Preface xxi Part 1 Silicon Photovoltaics 1 1 Emergence of Continuous Czochralski (CCZ) Growth for Monocrystalline Silicon Photovoltaics 3 Santosh K. Kurinec, Charles Bopp and Han Xu 1.1 Introduction 4 1.1.1 The Czochralski (CZ) Process 5 1.1.2 Continuous Czochralski Process (CCZ) 11 1.2 Continuous Czochralski Process Implementations 13 1.3 Solar Cells Fabricated Using CCZ Ingots 15 1.3.1 n-Type Mono-Si High-Efficiency Cells 15 1.3.2 Gallium-Doped p-Type Silicon Solar Cells 17 1.4 Conclusions 19 References 19 2 Materials Chemistry and Physics for Low-Cost Silicon Photovoltaics 23 Tingting Jiang and George Z. Chen 2.1 Introduction 24 2.2 Crystalline Silicon in Traditional/Classic Solar Cells 26 2.2.1 Manufacturing of Silicon Solar Cell 26 2.2.2 Efficiency Loss in Silicon Solar Cell 29 2.2.3 New Strategies for the Silicon Solar Cell 32 2.3 Low-Cost Crystalline Silicon 33 2.3.1 Metallurgical Silicon 33 2.3.2 Upgraded Metallurgical-Grade Silicon 33 2.3.2.1 Properties of Upgraded Metallurgical-Grade Silicon 34 2.3.2.2 Production of Upgraded Metallurgical-Grade Silicon 35 2.3.2.3 Development of Upgraded Metallurgical-Grade Silicon Solar Cells 36 2.3.3 High-Performance Multicrystalline Silicon 37 2.3.3.1 Crystal Growth 37 2.3.3.2 Material Properties of High-Performance Multicrystalline Silicon 39 2.3.3.3 Solar Cell Based on High-Performance Multicrystalline Silicon 40 2.4 Advanced p-Type Silicon-in Passivated Emitter and Rear Cell (PERC) 41 2.4.1 Passivated Emitter Solar Cells 41 2.4.1.1 Passivated Emitter Solar Cell (PESC) 41 2.4.1.2 Passivated Emitter and Rear Cell 42 2.4.1.3 Passivated Emitter, Rear Locally Diffused Solar Cells 43 2.4.1.4 Passivated Emitter, Rear Totally Diffused Solar Cells 44 2.4.2 Surface Passivation 45 2.5 Advanced n-Type Silicon 46 2.5.1 Interdigitated Back Contact (IBC) Solar Cell 47 2.5.2 Silicon Heterojunction (SHJ) Solar Cells 50 2.5.2.1 The Device Structure and the Advantages of HIT Solar Cells 51 2.5.2.2 Strategies of Achieving High-Efficiency HIT Solar Cell 52 2.6 Conclusion 53 References 54 3 Recycling Crystalline Silicon Photovoltaic Modules 61 Pablo Dias and Hugo Veit 3.1 Waste Electrical and Electronic Equipment 62 3.2 Photovoltaic Modules 65 3.2.1 First-Generation Photovoltaic Modules 66 3.3 Recyclability of Waste Photovoltaic Modules 69 3.3.1 Frame 70 3.3.2 Superstrate (Front Glass) 71 3.3.3 Metallic Filaments (Busbars) 72 3.3.4 Photovoltaic Cell 73 3.3.5 Polymers 74 3.3.6 Recyclability Summary 75 3.4 Separation and Recovery of Materials The Recycling Process 76 3.4.1 Mechanical and Physical Processes 76 3.4.1.1 Shredding 77 3.4.1.2 Sieving 77 3.4.1.3 Density Separation 79 3.4.1.4 Manual Separation 82 3.4.1.5 Electrostatic Separation 82 3.4.2 Thermal Processes-Polymers 84 3.4.3 Separation Using Organic Solvents 86 3.4.4 Pyrometallurgy 90 3.4.5 Hydrometallurgy 90 3.4.6 Electrometallurgy 93 3.5 New Trends in the Recycling Processes 94 References 98 Part 2 Emerging Photovoltaic Materials 103 4 Photovoltaics in Ferroelectric Materials Origin, Challenges and Opportunities 105 Charles Paillard, Grégory Geneste, Laurent Bellaiche, Jens Kreisel, Marvin Alexe and Brahim Dkhil 4.1 Physics of the Photovoltaic Effect in Ferroelectrics 106 4.1.1 Conventional Photovoltaic Technologies 106 4.1.1.1 The p-n Junction 106 4.1.1.2 The Shockley-Queisser Limit 109 4.1.2 Mechanisms of the Photovoltaic Effect in Ferroelectric Materials 110 4.1.2.1 The Bulk Photovoltaic Effect 110 4.1.2.2 Barrier Effects 118 4.2 Opportunities and Challenges of Photoferroelectrics 123 4.2.1 To Switch or not to Switch 124 4.2.1.1 Switchability 124 4.2.1.2 Influence of Defects 125 4.2.2 The Bandgap Problem 127 4.2.3 Application of Light-Induced Effects in Ferroelectrics Beyond Solar Cells 129 4.2.3.1 Photovoltaics and ICTs 130 4.2.3.2 Photo-Induced Strain Toward Optically Controlled Actuators 130 4.2.3.3 Photochemistry for Clean Energy and Environment 131 4.3 Conclusions 133 Acknowledgements 134 References 134 5 Tin-Based Novel Cubic Chalcogenides A New Paradigm for Photovoltaic Research 141 Sajid Ur Rehman, Faheem K. Butt, Zeeshan Tariq and Chuanbo Li 5.1 Introduction 142 5.2 Cubic Tin Sulfide (
-SnS) 145 5.2.1 Application
-SnS in Solar Cells 145 5.2.2 Application of
-SnS in Optical Devices 147 5.3 Cubic Tin Selenide (
-SnSe) 153 5.3.1 Application of
-SnSe in Solar Cells 153 5.3.2 Application of
-SnSe in Optical Devices 154 5.4 Cubic Tin Telluride (
-SnTe) 157 5.4.1 Application of
-SnTe in Optical Devices 158 5.5 Conclusion 160 Acknowledgement 160 References 161 6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165 Antonio Sánchez-Coronilla, Javier Navas, Elisa I. Martín, Teresa Aguilar, Juan Jesús Gallardo, Desireé de los Santos, Rodrigo Alcántara and Concha Fernández-Lorenzo 6.1 Introduction 166 6.2 Materials and Methods 167 6.2.1 Experimental 167 6.2.2 Computational Framework 169 6.3 Cu-TiO2 Doping 170 6.3.1 Photovoltaics of the DSSCs 175 6.4 Al-TiO2 Doping 177 6.5 Tm-TiO2 Doping 181 6.5.1 Photovoltaic Characterization 184 6.5.2 Photocatalytic Activity 186 6.6 Conclusions 187 References 189 7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195 Bruno Mettout and Pierre Tolédano 7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196 7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197 7.3 Response Functions under Linearly Polarized Light 199 7.3.1 Mean Symmetry of the Light Beam 199 7.3.2 Response Functions 202 7.3.2.1 Achiral and Nonmagnetic Materials 202 7.3.2.2 Chiral and Magnetic Materials 205 7.4 Selection Procedures 206 7.4.1 External Selection 206 7.4.2 Internal Selection 208 7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210 7.5.1 Second-Order Photovoltaic Effect 210 7.5.2 Photovoltaic Effects in LiNbO3 212 7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215 7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216 7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218 7.6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218 7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220 7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224 7.7.1 Photo-Magnetoelectric Effects 224 7.7.2 Photovoltaic Effects in BiFeO3 226 7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227 7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229 7.8.1 The Photorefractive Effect 230 7.8.2 The Photo-Hall Effect 231 7.9 Summary and Conclusion 234 Acknowledgement 235 References 235 8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239 Peediyekkal Jayaram 8.1 Introduction 239 8.2 Multication Film Growth and Analysis 243 8.3 Structural Analysis 244 8.4 Raman Spectra 247 8.5 Surface Morphology (AFM) 248 8.6 Optical Properties UV-Vis Transmittance Spectra 248 8.7 Electrical Properties 253 8.8 Conclusion 257 References 258 Part 3 Perovskite Solar Cells 261 9 Perovskite Solar Cells Promises and Challenges 263 Qiong Wang and Antonio Abate 9.1 The Scientific and Technological Background 264 9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264 9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266 9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269 9.2 The Fast Development of PSCs 270 9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271 9.2.1.1 Optical Properties 272 9.2.1.2 Electronic Properties 276 9.2.2 Composition Adjustment of Perovskite 288 9.2.2.1 Mixed Halides 288 9.2.2.2 Multi-Cations 292 9.2.2.3 Phase Segregation 297 9.2.3 Versatile Deposition Methods of Perovskite Film 297 9.2.3.1 Solution-Processed Methods 298 9.2.3.2 Vapor Deposition Methods 306 9.2.4 Charge Selective Contacts in PSCs 308 9.2.4.1 Electron Selective Contacts 309 9.2.4.2 Hole Selective Contacts 311 9.2.5 Evaluation of PSCs 315 9.2.5.1 J-V curve 315 9.2.5.2 Maximum Power Point Tracking (MPPT) 316 9.2.6 The Systematic Understanding of PSCs 318 9.2.6.1 Moisture Vulnerability of Perovskite Materials 318 9.2.6.2 The Role of Grain Boundaries 318 9.2.6.3 Ion Migration and Hysteresis 322 9.2.6.4 Interface/Bulk Defects and Passivation 324 9.2.7 PSCs in a Tandem 328 9.2.7.1 Structures of Perovskite Tandem Cells 328 9.2.7.2 Transparent Contacts and Recombination Contacts 330 9.3 Remaining Challenges and Prospects of PSCs 331 9.3.1 Lead-Free PSCs 331 9.3.2 Stable and Cheap Contact Materials 336 9.3.3 Strategies toward Stable PSCs 338 9.3.3.1 Against Moisture 338 9.3.3.2 Against UV Light 339 9.3.3.3 Against Heat 341 9.3.4 Large-Area Production of Highly Efficient PSCs 342 References 345 10 Organic-Inorganic Hybrid Perovskite, CH3NH3PbI3 Modifications in Pb Sites from Experimental and Theoretical Perspectives 357 Javier Navas, Antonio Sánchez-Coronilla, Juan Jesús Gallardo, Jose Carlos Piñero, Teresa Aguilar, Elisa I. Martín, Rodrigo Alcántara, Concha Fernández-Lorenzo and Joaquin Martín-Calleja 10.1 Introduction 358 10.2 Low Doping on Pb Sites 359 10.2.1 Materials and Methods 359 10.2.1.1 Experimental 359 10.2.1.2 Computational Details 361 10.2.2 Properties of the Perovskite Prepared 362 10.2.2.1 XRD 362 10.2.2.2 Diffuse Reflectance UV-Vis Spectroscopy 365 10.2.2.3 X-Ray Photoelectron Spectroscopy 366 10.2.2.4 SEM and Cathodoluminescence 369 10.2.3 Theoretical Analysis 371 10.2.3.1 Structure and Local Geometry 371 10.2.3.2 DOS and PDOS Analysis 372 10.2.3.3 ELF Analysis 376 10.3 High Doping on Pb Sites 378 10.3.1 Properties of the Perovskite Prepared 379 10.3.1.1 XRD 379 10.3.1.2 Diffuse Reflectance UV-Vis Spectroscopy 384 10.3.1.3 X-Ray Photoelectron Spectroscopy 386 10.3.2 Theoretical Analysis 388 10.3.2.1 Structure and Local Geometry 388 10.3.2.2 Electron Localization Function 391 10.3.2.3 DOS and PDOS Analysis 393 10.4 Conclusions 397 References 397 Part 4 Organic Solar Cells 401 11 Increasing the Dielectric Constant of Organic Materials for Photovoltaics 403 Viktor Ivasyshyn, Gang Ye, Sylvia Rousseva, Jan C. Hummelen and Ryan C. Chiechi 11.1 Introduction 404 11.2 Increasing the Dielectric Constant 415 11.2.1 Methodology of Dielectric Constant Measurement 415 11.2.2 High Dielectric Constant Materials 421 11.2.2.1 High Dielectric Constant Donor Materials 422 11.2.2.2 High Dielectric Constant Acceptor Materials 429 11.3 Conclusions and Outlook 435 References 436 12 Recent Developments in Dye-Sensitized Solar Cells and Potential Applications 443 Devender Singh, Raman Kumar Saini and Shri Bhagwan 12.1 Solar Energy and Solar Cells 444 12.2 Types of Solar Cells 445 12.2.1 First-Generation Photovoltaic Cells 445 12.2.1.1 Silicon Single-Crystal-Based Solar Cells 445 12.2.1.2 Polycrystalline Silicon Based Solar Cells 445 12.2.1.3 Gallium Arsenide (GaAs)-Based Solar Cells 447 12.2.2 Second-Generation Photovoltaic Cells 447 12.2.2.1 Amorphous Silicon (a-Si)-Based Solar Cells 447 12.2.2.2 Cadmium Telluride (CdTe)-Based Solar Cells 448 12.2.2.3 Copper Indium Diselenide (CuInSe2, or CIS)- Based Solar Cells 448 12.2.3 Third-Generation Photovoltaic Cells 449 12.2.3.1 Copper Zinc Tin Sulfide (CZTS) and (Its Derivatives) CZTSSe and CZTSe Solar Cells 449 12.2.3.2 Organic Solar Cells 449 12.2.3.3 Perovskite Solar Cells 450 12.2.3.4 Quantum Dot Solar Cell 450 12.3 Dye-Sensitized Solar Cells (DSSCs) 450 12.4 Operation of DSSCs 452 12.4.1 Working System of DSSCs 454 12.5 Fabrication of DSSCs 455 12.5.1 Substrate Selection and Preparation 456 12.5.1.1 Cutting of the Substrate 456 12.5.1.2 Cleaning of the Substrate 456 12.5.1.3 Masking of the Substrate 456 12.5.2 Film Deposition on Substrate 456 12.5.2.1 Preparation of TiO2 Paste 459 12.5.2.2 Depositing the TiO2 Layer on the Glass Plate 460 12.5.3 Dye Impregnation on the Electrode 460 12.5.4 Preparation of Counter Electrode 460 12.6 Various Materials Used as Essential Components of DSSCs 461 12.6.1 Transparent Conducting Substrate 461 12.6.2 Photoelectrodes 462 12.6.2.1 Titanium Oxide (TiO2) 462 12.6.2.2 Zinc Oxide (ZnO) 463 12.6.2.3 Niobium Pentoxide (Nb2O5) 464 12.6.2.4 Ternary Photoelectrode Materials 465 12.6.2.5 Other Metal Oxides 465 12.6.3 Photosensitizers 466 12.6.3.1 Metal Complexes as Sensitizers 467 12.6.4 Electrolytes 471 12.6.4.1 Liquid Electrolytes 472 12.6.4.2 Solid-State Electrolytes 473 12.6.4.3 Quasi-Solid Electrolyte 474 12.6.5 Counter Electrodes 474 12.6.5.1 Platinized Conducting Glass 474 12.6.5.2 Carbon Materials 474 12.6.5.3 Conducting Polymers 475 12.7 Advantages and Applications of DSSC 475 12.8 Future Prospect of DSSC 476 12.9 Conclusions 476 References 477 13 Heterojunction Energetics and Open-Circuit Voltages of Organic Photovoltaic Cells 487 Peicheng Li and Zheng-Hong Lu 13.1 Introduction 487 13.2 Ultraviolet Photoemission Spectroscopy 490 13.3 Energy Level Alignment at Heterojunction Interfaces 493 13.3.1 Schottky Barrier, Interfacial Dipole, and Slope Parameter 493 13.3.2 Interfacial Dipole Theory 495 13.3.3 Mapping Energy Level Alignment at Heterojunction Interface 497 13.4 Open-Circuit Voltage of Organic Photovoltaic Cell 499 13.4.1 Two-Diode Model 499 13.4.2 Quasi Fermi Level Model 501 13.4.3 Chemical Equilibrium Model 503 13.4.4 Kinetic Hopping Model 504 References 508 14 Plasma-Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices 511 Andrey Kosarev, Ismael Cosme, Svetlana Mansurova, Dmitriy Andronikov, Alexey Abramov and Eugeny Terukov 14.1 Introduction 512 14.2 Experimental 513 14.2.1 Fabrication of PECVD Materials 513 14.2.2 Fabrication of Organic Materials 514 14.2.3 Configurations and Fabrication of Device Structures 516 14.2.4 Characterization of Materials 516 14.2.5 Characterization of Device Structures 521 14.3 Material Results 522 14.3.1 Structure and Composition 522 14.3.2 Optical Properties 526 14.3.3 Electrical Properties 529 14.4 Results for Devices 537 14.4.1 Devices Based on PECVD Materials 537 14.4.2 Devices Based on Organic Materials 538 14.4.3 Hybrid Devices Based on PECVD-Polymer Materials 540 14.4.4 Hybrid Devices Using Crystalline Semicinductors, Non-Crystalline PECVD, and Organic Materials (HJT-OS Structures) 543 14.5 Outlook 546 Acknowledgment 546 References 546 Part 5 Nano-Photovoltaics 551 15 Use of Carbon Nanotubes (CNTs) in Third-Generation Solar Cells 553 LePing Yu, Munkhbayar Batmunkh, Cameron Shearer and Joseph G. Shapter 15.1 Introduction 554 15.1.1 Energy Issues and Potential Solutions 554 15.1.2 Categories of Photovoltaic Devices and Their Development 554 15.2 Carbon Nanotubes (CNTs) 556 15.3 Transparent Conducting Electrodes (TCEs) 556 15.3.1 ITO and FTO 556 15.3.2 CNTs for TCEs 557 15.4 Dye-Sensitized Solar Cells (DSSCs) 563 15.4.1 CNTs-TCFs for DSSCs 563 15.4.2 Semiconducting Layers 565 15.4.2.1 Nanostructured TiO2 Materials 565 15.4.2.2 Semiconducting Layers with CNTs 566 15.4.3 Catalyst Layers 570 15.4.3.1 Platinum (Pt) and Other Catalysts 570 15.5 CNTs in Perovskite Solar Cells 572 15.6 Carbon Nanotube-Silicon (CNT-Si) or Nanotube-Silicon Heterojunction (NSH) Solar Cells 575 15.6.1 Working Mechanism 575 15.6.2 Development of Si-CNT Devices 576 15.6.3 Origin of Photocurrent 577 15.6.4 Effect of the Number of CNT Walls 578 15.6.5 Effect of the Electronic Type of CNTs 579 15.6.6 Effect of CNT Alignment in the Electrode 579 15.6.7 Effect of the Transmittance/Thickness of CNT Films 580 15.6.8 Effect of Doping 580 15.6.9 Intentional Addition of Silicon Oxide Layer 581 15.6.10 Enhancement of Light Absorption 582 15.6.11 Application of Conductive Polymers 584 15.6.12 Discussion 584 15.7 Outlook and Conclusion 585 References 586 16 Quantum Dot Solar Cells 611 Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia and Lidong Sun 16.1 Introduction 612 16.2 Quantum Dots and Their Properties 612 16.2.1 Fundamental Concepts 612 16.2.2 Size-Dependent Quantum Confinement Effect 613 16.2.3 Multiple Exciton Generation Effect 614 16.2.4 The Kondo Effect 616 16.2.5 Applications 617 16.3 Synthetic Methods for Quantum Dots 618 16.3.1 Hot Injection 618 16.3.1.1 Theoretical Evaluation of Nucleation and Growth 619 16.3.1.2 Influence Factors 621 16.3.1.3 Features 623 16.3.2 Chemical Bath Deposition 624 16.3.2.1 Theoretical Evaluation of the CBD Method 625 16.3.2.2 Influence Factors 625 16.3.2.3 Features 627 16.3.3 Successive Ionic Layer Adsorption and Reaction 628 16.3.3.1 Theoretical Evaluation of SILAR Method 629 16.3.3.2 Influence Factors 630 16.3.3.3 Features 632 16.4 Quantum Dot Solar Cells 633 16.4.1 Schottky Junction Solar Cells 633 16.4.1.1 Device Structure 633 16.4.1.2 Preparation Route 635 16.4.1.3 Materials Selection 635 16.4.1.4 Photovoltaic Performance 636 16.4.2 Depleted Heterojunction Solar Cells 637 16.4.2.1 Device Structure 637 16.4.2.2 Preparation Route 638 16.4.2.3 Materials Selection 639 16.4.2.4 Photovoltaic Performance 640 16.4.3 Quantum-Dot-Sensitized Solar Cells 641 16.4.3.1 Device Structure 641 16.4.3.2 Preparation Route 642 16.4.3.3 Materials Selection 643 16.4.3.4 Photovoltaic Performance 644 16.4 Challenges and Perspectives 645 References 646 17 Near-Infrared Responsive Quantum Dot Photovoltaics Progress, Challenges, and Perspectives 659 Ru Zhou, Jun Xu and Jinzhang Xu 17.1 Introduction 660 17.2 Physical and Chemical Properties 662 17.2.1 Multiple Exciton Generation 662 17.2.2 Quantum Size Effect 663 17.2.3 Other Features 664 17.3 Materials and Film Processing 665 17.3.1 In Situ Strategy 665 17.3.2 Ex Situ Strategy 666 17.3.3 A Comparison between In Situ and Ex Situ 667 17.4 NIR Responsive QDs and Photovoltaic Performance 669 17.4.1 Binary Lead Chalcogenides 669 17.4.2 Binary Silver Chalcogenides 674 17.4.3 Ternary Indium-Based Chalcogenides 676 17.4.4 Ternary and Quaternary Alloyed Compounds 678 17.5 Strategies for Performance Enhancement 682 17.5.1 Light Management 682 17.5.1.1 Nanophotonic Structuring 682 17.5.1.2 Plasmonic Enhancement 683 17.5.2 Carrier Management 684 17.5.2.1 Band Structure Tailoring 684 17.5.2.2 Surface Engineering 687 17.5.2.3 Charge Collection Optimizing 692 17.6 New Concept Solar Cells 692 17.6.1 Multiple-Junction CQD Solar Cells 693 17.6.2 Flexible Solar Cells 694 17.6.3 Semitransparent Solar Cells 694 17.6.4 QD/Perovskite Hybrid Solar Cells 696 17.7 Conclusions and Perspectives 699 Acknowledgments 701 References 701 Part 6 Concentrator Photovoltaics and Analysis Models 719 18 Dense-Array Concentrator Photovoltaic System 721 Kok-Keong Chong, Chee-Woon Wong, Tiong-Keat Yew, Ming-Hui Tan and Woei-Chong Tan 18.1 Introduction 722 18.2 Primary Concentrator Non-Imaging Dish Concentrator 722 18.2.1 Geometry of Non-Imaging Dish Concentrator (NIDC) 723 18.2.2 Methodology of Designing NIDC Geometry 726 18.2.3 Coordinate Transformation of Facet Mirror 728 18.2.4 Computational Algorithm 730 18.3 Secondary Concentrator An Array of Crossed Compound Parabolic Concentrator (CCPC) Lenses 733 18.4 Concentrator Photovoltaic Module 740 18.5 Prototype of Dense-Array Concentrator Photovoltaic System (DACPV) 742 18.6 Optical Efficiency of the CCPC Lens 744 18.7 Experimental Study of Electrical Performance 750 18.7.1 Current Measurement Circuit 754 18.8 Cost Estimation of the Dense-Array Concentrator Photovoltaic System Using Two-Stage Non-Imaging Concentrators 757 18.9 Conclusion 758 Acknowledgments 759 References 760 19 Solar Radiation Analysis Model and PVsyst Simulation for Photovoltaic System Design 763 Figen Balo and Lutfu S. Sua 19.1 Introduction 764 19.1.1 Solar Energy in Turkey 764 19.1.2 Climate, Solar Energy Potential, and Electric Production in Erzincan 766 19.2 Data Analysis Model for Solar Radiation Intensity Calculation 768 19.2.1 Horizontal Surface 768 19.2.1.1 Daily Total Solar Radiation 768 19.2.1.2 Daily Diffuse Solar Radiation 768 19.2.1.3 Momentary Total Solar Radiation 769 19.2.1.4 Momentary Diffuse and Direct Solar Radiation 769 19.2.2 Calculating Solar Radiation Intensity on Inclined Surface 770 19.2.2.1 Momentary Direct Solar Radiation 770 19.2.2.2 Momentary Diffuse Solar Radiation 770 19.2.2.3 Reflecting Momentary Solar Radiation 771 19.2.2.4 Total Momentary Solar Radiation 771 19.2.3 Data Analysis and Discussion 771 19.3 PVsyst Simulation for the Solar Farm System Design 777 19.3.1 Methodology 777 19.3.2 Findings Obtained with PVsyst Simulation 781 19.4 Conclusions 783 References 784 Index 787
-SnS) 145 5.2.1 Application
-SnS in Solar Cells 145 5.2.2 Application of
-SnS in Optical Devices 147 5.3 Cubic Tin Selenide (
-SnSe) 153 5.3.1 Application of
-SnSe in Solar Cells 153 5.3.2 Application of
-SnSe in Optical Devices 154 5.4 Cubic Tin Telluride (
-SnTe) 157 5.4.1 Application of
-SnTe in Optical Devices 158 5.5 Conclusion 160 Acknowledgement 160 References 161 6 Insights into the Photovoltaic and Photocatalytic Activity of Cu-, Al-, and Tm-Doped TiO2 165 Antonio Sánchez-Coronilla, Javier Navas, Elisa I. Martín, Teresa Aguilar, Juan Jesús Gallardo, Desireé de los Santos, Rodrigo Alcántara and Concha Fernández-Lorenzo 6.1 Introduction 166 6.2 Materials and Methods 167 6.2.1 Experimental 167 6.2.2 Computational Framework 169 6.3 Cu-TiO2 Doping 170 6.3.1 Photovoltaics of the DSSCs 175 6.4 Al-TiO2 Doping 177 6.5 Tm-TiO2 Doping 181 6.5.1 Photovoltaic Characterization 184 6.5.2 Photocatalytic Activity 186 6.6 Conclusions 187 References 189 7 Theory of the Photovoltaic and Light-Induced Effects in Multiferroics 195 Bruno Mettout and Pierre Tolédano 7.1 Insufficiency of the Traditional Approach to the Bulk Photovoltaic Effect 196 7.2 Theoretical Approach to the Photovoltaic and Light-Induced Effects 197 7.3 Response Functions under Linearly Polarized Light 199 7.3.1 Mean Symmetry of the Light Beam 199 7.3.2 Response Functions 202 7.3.2.1 Achiral and Nonmagnetic Materials 202 7.3.2.2 Chiral and Magnetic Materials 205 7.4 Selection Procedures 206 7.4.1 External Selection 206 7.4.2 Internal Selection 208 7.5 Application of the Theory to the Photovoltaic and Photo-Induced Effects in LiNbO3 210 7.5.1 Second-Order Photovoltaic Effect 210 7.5.2 Photovoltaic Effects in LiNbO3 212 7.5.3 Optical Rectification, Photomagnetic, and Photo-Toroidal First-Order Effects 215 7.5.4 First-Order Photoelastic and Photo-Magnetoelectric Effects 216 7.6 Magnetoelectric, Photovoltaic, and Magneto-Photovoltaic Effects in KBiFe2O5 218 7.6.1 Magnetoelectric Effects in KBiFe2O5 in Absence of Illumination 218 7.6.2 Photovoltaic and Magneto-Photovoltaic Effects in KBiFe2O5 220 7.7 Photo-Magnetoelectric and Magneto-Photovoltaic Effects in BiFeO3 224 7.7.1 Photo-Magnetoelectric Effects 224 7.7.2 Photovoltaic Effects in BiFeO3 226 7.7.3 Magneto-Photovoltaic Effects in BiFeO3 227 7.8 Photorefractive and Photo-Hall Effects in Tungsten Bronzes 229 7.8.1 The Photorefractive Effect 230 7.8.2 The Photo-Hall Effect 231 7.9 Summary and Conclusion 234 Acknowledgement 235 References 235 8 Multication Transparent Conducting Oxides: Tunable Materials for Photovoltaic Applications 239 Peediyekkal Jayaram 8.1 Introduction 239 8.2 Multication Film Growth and Analysis 243 8.3 Structural Analysis 244 8.4 Raman Spectra 247 8.5 Surface Morphology (AFM) 248 8.6 Optical Properties UV-Vis Transmittance Spectra 248 8.7 Electrical Properties 253 8.8 Conclusion 257 References 258 Part 3 Perovskite Solar Cells 261 9 Perovskite Solar Cells Promises and Challenges 263 Qiong Wang and Antonio Abate 9.1 The Scientific and Technological Background 264 9.1.1 The Share of Silicon Solar Cells and Thin Film Solar Cells in Photovoltaic Market 264 9.1.2 The Bottleneck of Dye-Sensitized Solar Cells and Organic Solar Cells 266 9.1.3 From a Cost-Effective Alternative to the Highly Efficient Solution 269 9.2 The Fast Development of PSCs 270 9.2.1 The Fundamental Optoelectronic Properties of Hybrid Organic-Inorganic Lead Halide Perovskite Materials 271 9.2.1.1 Optical Properties 272 9.2.1.2 Electronic Properties 276 9.2.2 Composition Adjustment of Perovskite 288 9.2.2.1 Mixed Halides 288 9.2.2.2 Multi-Cations 292 9.2.2.3 Phase Segregation 297 9.2.3 Versatile Deposition Methods of Perovskite Film 297 9.2.3.1 Solution-Processed Methods 298 9.2.3.2 Vapor Deposition Methods 306 9.2.4 Charge Selective Contacts in PSCs 308 9.2.4.1 Electron Selective Contacts 309 9.2.4.2 Hole Selective Contacts 311 9.2.5 Evaluation of PSCs 315 9.2.5.1 J-V curve 315 9.2.5.2 Maximum Power Point Tracking (MPPT) 316 9.2.6 The Systematic Understanding of PSCs 318 9.2.6.1 Moisture Vulnerability of Perovskite Materials 318 9.2.6.2 The Role of Grain Boundaries 318 9.2.6.3 Ion Migration and Hysteresis 322 9.2.6.4 Interface/Bulk Defects and Passivation 324 9.2.7 PSCs in a Tandem 328 9.2.7.1 Structures of Perovskite Tandem Cells 328 9.2.7.2 Transparent Contacts and Recombination Contacts 330 9.3 Remaining Challenges and Prospects of PSCs 331 9.3.1 Lead-Free PSCs 331 9.3.2 Stable and Cheap Contact Materials 336 9.3.3 Strategies toward Stable PSCs 338 9.3.3.1 Against Moisture 338 9.3.3.2 Against UV Light 339 9.3.3.3 Against Heat 341 9.3.4 Large-Area Production of Highly Efficient PSCs 342 References 345 10 Organic-Inorganic Hybrid Perovskite, CH3NH3PbI3 Modifications in Pb Sites from Experimental and Theoretical Perspectives 357 Javier Navas, Antonio Sánchez-Coronilla, Juan Jesús Gallardo, Jose Carlos Piñero, Teresa Aguilar, Elisa I. Martín, Rodrigo Alcántara, Concha Fernández-Lorenzo and Joaquin Martín-Calleja 10.1 Introduction 358 10.2 Low Doping on Pb Sites 359 10.2.1 Materials and Methods 359 10.2.1.1 Experimental 359 10.2.1.2 Computational Details 361 10.2.2 Properties of the Perovskite Prepared 362 10.2.2.1 XRD 362 10.2.2.2 Diffuse Reflectance UV-Vis Spectroscopy 365 10.2.2.3 X-Ray Photoelectron Spectroscopy 366 10.2.2.4 SEM and Cathodoluminescence 369 10.2.3 Theoretical Analysis 371 10.2.3.1 Structure and Local Geometry 371 10.2.3.2 DOS and PDOS Analysis 372 10.2.3.3 ELF Analysis 376 10.3 High Doping on Pb Sites 378 10.3.1 Properties of the Perovskite Prepared 379 10.3.1.1 XRD 379 10.3.1.2 Diffuse Reflectance UV-Vis Spectroscopy 384 10.3.1.3 X-Ray Photoelectron Spectroscopy 386 10.3.2 Theoretical Analysis 388 10.3.2.1 Structure and Local Geometry 388 10.3.2.2 Electron Localization Function 391 10.3.2.3 DOS and PDOS Analysis 393 10.4 Conclusions 397 References 397 Part 4 Organic Solar Cells 401 11 Increasing the Dielectric Constant of Organic Materials for Photovoltaics 403 Viktor Ivasyshyn, Gang Ye, Sylvia Rousseva, Jan C. Hummelen and Ryan C. Chiechi 11.1 Introduction 404 11.2 Increasing the Dielectric Constant 415 11.2.1 Methodology of Dielectric Constant Measurement 415 11.2.2 High Dielectric Constant Materials 421 11.2.2.1 High Dielectric Constant Donor Materials 422 11.2.2.2 High Dielectric Constant Acceptor Materials 429 11.3 Conclusions and Outlook 435 References 436 12 Recent Developments in Dye-Sensitized Solar Cells and Potential Applications 443 Devender Singh, Raman Kumar Saini and Shri Bhagwan 12.1 Solar Energy and Solar Cells 444 12.2 Types of Solar Cells 445 12.2.1 First-Generation Photovoltaic Cells 445 12.2.1.1 Silicon Single-Crystal-Based Solar Cells 445 12.2.1.2 Polycrystalline Silicon Based Solar Cells 445 12.2.1.3 Gallium Arsenide (GaAs)-Based Solar Cells 447 12.2.2 Second-Generation Photovoltaic Cells 447 12.2.2.1 Amorphous Silicon (a-Si)-Based Solar Cells 447 12.2.2.2 Cadmium Telluride (CdTe)-Based Solar Cells 448 12.2.2.3 Copper Indium Diselenide (CuInSe2, or CIS)- Based Solar Cells 448 12.2.3 Third-Generation Photovoltaic Cells 449 12.2.3.1 Copper Zinc Tin Sulfide (CZTS) and (Its Derivatives) CZTSSe and CZTSe Solar Cells 449 12.2.3.2 Organic Solar Cells 449 12.2.3.3 Perovskite Solar Cells 450 12.2.3.4 Quantum Dot Solar Cell 450 12.3 Dye-Sensitized Solar Cells (DSSCs) 450 12.4 Operation of DSSCs 452 12.4.1 Working System of DSSCs 454 12.5 Fabrication of DSSCs 455 12.5.1 Substrate Selection and Preparation 456 12.5.1.1 Cutting of the Substrate 456 12.5.1.2 Cleaning of the Substrate 456 12.5.1.3 Masking of the Substrate 456 12.5.2 Film Deposition on Substrate 456 12.5.2.1 Preparation of TiO2 Paste 459 12.5.2.2 Depositing the TiO2 Layer on the Glass Plate 460 12.5.3 Dye Impregnation on the Electrode 460 12.5.4 Preparation of Counter Electrode 460 12.6 Various Materials Used as Essential Components of DSSCs 461 12.6.1 Transparent Conducting Substrate 461 12.6.2 Photoelectrodes 462 12.6.2.1 Titanium Oxide (TiO2) 462 12.6.2.2 Zinc Oxide (ZnO) 463 12.6.2.3 Niobium Pentoxide (Nb2O5) 464 12.6.2.4 Ternary Photoelectrode Materials 465 12.6.2.5 Other Metal Oxides 465 12.6.3 Photosensitizers 466 12.6.3.1 Metal Complexes as Sensitizers 467 12.6.4 Electrolytes 471 12.6.4.1 Liquid Electrolytes 472 12.6.4.2 Solid-State Electrolytes 473 12.6.4.3 Quasi-Solid Electrolyte 474 12.6.5 Counter Electrodes 474 12.6.5.1 Platinized Conducting Glass 474 12.6.5.2 Carbon Materials 474 12.6.5.3 Conducting Polymers 475 12.7 Advantages and Applications of DSSC 475 12.8 Future Prospect of DSSC 476 12.9 Conclusions 476 References 477 13 Heterojunction Energetics and Open-Circuit Voltages of Organic Photovoltaic Cells 487 Peicheng Li and Zheng-Hong Lu 13.1 Introduction 487 13.2 Ultraviolet Photoemission Spectroscopy 490 13.3 Energy Level Alignment at Heterojunction Interfaces 493 13.3.1 Schottky Barrier, Interfacial Dipole, and Slope Parameter 493 13.3.2 Interfacial Dipole Theory 495 13.3.3 Mapping Energy Level Alignment at Heterojunction Interface 497 13.4 Open-Circuit Voltage of Organic Photovoltaic Cell 499 13.4.1 Two-Diode Model 499 13.4.2 Quasi Fermi Level Model 501 13.4.3 Chemical Equilibrium Model 503 13.4.4 Kinetic Hopping Model 504 References 508 14 Plasma-Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices 511 Andrey Kosarev, Ismael Cosme, Svetlana Mansurova, Dmitriy Andronikov, Alexey Abramov and Eugeny Terukov 14.1 Introduction 512 14.2 Experimental 513 14.2.1 Fabrication of PECVD Materials 513 14.2.2 Fabrication of Organic Materials 514 14.2.3 Configurations and Fabrication of Device Structures 516 14.2.4 Characterization of Materials 516 14.2.5 Characterization of Device Structures 521 14.3 Material Results 522 14.3.1 Structure and Composition 522 14.3.2 Optical Properties 526 14.3.3 Electrical Properties 529 14.4 Results for Devices 537 14.4.1 Devices Based on PECVD Materials 537 14.4.2 Devices Based on Organic Materials 538 14.4.3 Hybrid Devices Based on PECVD-Polymer Materials 540 14.4.4 Hybrid Devices Using Crystalline Semicinductors, Non-Crystalline PECVD, and Organic Materials (HJT-OS Structures) 543 14.5 Outlook 546 Acknowledgment 546 References 546 Part 5 Nano-Photovoltaics 551 15 Use of Carbon Nanotubes (CNTs) in Third-Generation Solar Cells 553 LePing Yu, Munkhbayar Batmunkh, Cameron Shearer and Joseph G. Shapter 15.1 Introduction 554 15.1.1 Energy Issues and Potential Solutions 554 15.1.2 Categories of Photovoltaic Devices and Their Development 554 15.2 Carbon Nanotubes (CNTs) 556 15.3 Transparent Conducting Electrodes (TCEs) 556 15.3.1 ITO and FTO 556 15.3.2 CNTs for TCEs 557 15.4 Dye-Sensitized Solar Cells (DSSCs) 563 15.4.1 CNTs-TCFs for DSSCs 563 15.4.2 Semiconducting Layers 565 15.4.2.1 Nanostructured TiO2 Materials 565 15.4.2.2 Semiconducting Layers with CNTs 566 15.4.3 Catalyst Layers 570 15.4.3.1 Platinum (Pt) and Other Catalysts 570 15.5 CNTs in Perovskite Solar Cells 572 15.6 Carbon Nanotube-Silicon (CNT-Si) or Nanotube-Silicon Heterojunction (NSH) Solar Cells 575 15.6.1 Working Mechanism 575 15.6.2 Development of Si-CNT Devices 576 15.6.3 Origin of Photocurrent 577 15.6.4 Effect of the Number of CNT Walls 578 15.6.5 Effect of the Electronic Type of CNTs 579 15.6.6 Effect of CNT Alignment in the Electrode 579 15.6.7 Effect of the Transmittance/Thickness of CNT Films 580 15.6.8 Effect of Doping 580 15.6.9 Intentional Addition of Silicon Oxide Layer 581 15.6.10 Enhancement of Light Absorption 582 15.6.11 Application of Conductive Polymers 584 15.6.12 Discussion 584 15.7 Outlook and Conclusion 585 References 586 16 Quantum Dot Solar Cells 611 Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia and Lidong Sun 16.1 Introduction 612 16.2 Quantum Dots and Their Properties 612 16.2.1 Fundamental Concepts 612 16.2.2 Size-Dependent Quantum Confinement Effect 613 16.2.3 Multiple Exciton Generation Effect 614 16.2.4 The Kondo Effect 616 16.2.5 Applications 617 16.3 Synthetic Methods for Quantum Dots 618 16.3.1 Hot Injection 618 16.3.1.1 Theoretical Evaluation of Nucleation and Growth 619 16.3.1.2 Influence Factors 621 16.3.1.3 Features 623 16.3.2 Chemical Bath Deposition 624 16.3.2.1 Theoretical Evaluation of the CBD Method 625 16.3.2.2 Influence Factors 625 16.3.2.3 Features 627 16.3.3 Successive Ionic Layer Adsorption and Reaction 628 16.3.3.1 Theoretical Evaluation of SILAR Method 629 16.3.3.2 Influence Factors 630 16.3.3.3 Features 632 16.4 Quantum Dot Solar Cells 633 16.4.1 Schottky Junction Solar Cells 633 16.4.1.1 Device Structure 633 16.4.1.2 Preparation Route 635 16.4.1.3 Materials Selection 635 16.4.1.4 Photovoltaic Performance 636 16.4.2 Depleted Heterojunction Solar Cells 637 16.4.2.1 Device Structure 637 16.4.2.2 Preparation Route 638 16.4.2.3 Materials Selection 639 16.4.2.4 Photovoltaic Performance 640 16.4.3 Quantum-Dot-Sensitized Solar Cells 641 16.4.3.1 Device Structure 641 16.4.3.2 Preparation Route 642 16.4.3.3 Materials Selection 643 16.4.3.4 Photovoltaic Performance 644 16.4 Challenges and Perspectives 645 References 646 17 Near-Infrared Responsive Quantum Dot Photovoltaics Progress, Challenges, and Perspectives 659 Ru Zhou, Jun Xu and Jinzhang Xu 17.1 Introduction 660 17.2 Physical and Chemical Properties 662 17.2.1 Multiple Exciton Generation 662 17.2.2 Quantum Size Effect 663 17.2.3 Other Features 664 17.3 Materials and Film Processing 665 17.3.1 In Situ Strategy 665 17.3.2 Ex Situ Strategy 666 17.3.3 A Comparison between In Situ and Ex Situ 667 17.4 NIR Responsive QDs and Photovoltaic Performance 669 17.4.1 Binary Lead Chalcogenides 669 17.4.2 Binary Silver Chalcogenides 674 17.4.3 Ternary Indium-Based Chalcogenides 676 17.4.4 Ternary and Quaternary Alloyed Compounds 678 17.5 Strategies for Performance Enhancement 682 17.5.1 Light Management 682 17.5.1.1 Nanophotonic Structuring 682 17.5.1.2 Plasmonic Enhancement 683 17.5.2 Carrier Management 684 17.5.2.1 Band Structure Tailoring 684 17.5.2.2 Surface Engineering 687 17.5.2.3 Charge Collection Optimizing 692 17.6 New Concept Solar Cells 692 17.6.1 Multiple-Junction CQD Solar Cells 693 17.6.2 Flexible Solar Cells 694 17.6.3 Semitransparent Solar Cells 694 17.6.4 QD/Perovskite Hybrid Solar Cells 696 17.7 Conclusions and Perspectives 699 Acknowledgments 701 References 701 Part 6 Concentrator Photovoltaics and Analysis Models 719 18 Dense-Array Concentrator Photovoltaic System 721 Kok-Keong Chong, Chee-Woon Wong, Tiong-Keat Yew, Ming-Hui Tan and Woei-Chong Tan 18.1 Introduction 722 18.2 Primary Concentrator Non-Imaging Dish Concentrator 722 18.2.1 Geometry of Non-Imaging Dish Concentrator (NIDC) 723 18.2.2 Methodology of Designing NIDC Geometry 726 18.2.3 Coordinate Transformation of Facet Mirror 728 18.2.4 Computational Algorithm 730 18.3 Secondary Concentrator An Array of Crossed Compound Parabolic Concentrator (CCPC) Lenses 733 18.4 Concentrator Photovoltaic Module 740 18.5 Prototype of Dense-Array Concentrator Photovoltaic System (DACPV) 742 18.6 Optical Efficiency of the CCPC Lens 744 18.7 Experimental Study of Electrical Performance 750 18.7.1 Current Measurement Circuit 754 18.8 Cost Estimation of the Dense-Array Concentrator Photovoltaic System Using Two-Stage Non-Imaging Concentrators 757 18.9 Conclusion 758 Acknowledgments 759 References 760 19 Solar Radiation Analysis Model and PVsyst Simulation for Photovoltaic System Design 763 Figen Balo and Lutfu S. Sua 19.1 Introduction 764 19.1.1 Solar Energy in Turkey 764 19.1.2 Climate, Solar Energy Potential, and Electric Production in Erzincan 766 19.2 Data Analysis Model for Solar Radiation Intensity Calculation 768 19.2.1 Horizontal Surface 768 19.2.1.1 Daily Total Solar Radiation 768 19.2.1.2 Daily Diffuse Solar Radiation 768 19.2.1.3 Momentary Total Solar Radiation 769 19.2.1.4 Momentary Diffuse and Direct Solar Radiation 769 19.2.2 Calculating Solar Radiation Intensity on Inclined Surface 770 19.2.2.1 Momentary Direct Solar Radiation 770 19.2.2.2 Momentary Diffuse Solar Radiation 770 19.2.2.3 Reflecting Momentary Solar Radiation 771 19.2.2.4 Total Momentary Solar Radiation 771 19.2.3 Data Analysis and Discussion 771 19.3 PVsyst Simulation for the Solar Farm System Design 777 19.3.1 Methodology 777 19.3.2 Findings Obtained with PVsyst Simulation 781 19.4 Conclusions 783 References 784 Index 787