- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book. Key features: - More terms from General Topology than any other book ever published - Short and informative articles - Authors include the…mehr
Andere Kunden interessierten sich auch für
- Peter Charles Taylor / John Wallace (eds.)Contemporary Qualitative Research161,99 €
- Michael GrabeGeneralized Gaussian Error Calculus81,99 €
- Science Communication in the World122,99 €
- L. KeviczkyMathematics and Control Engineering of Grinding Technology42,99 €
- John VennThe Logic of Chance35,90 €
- Lisbeth FajstrupDirected Algebraic Topology and Concurrency81,99 €
- Paul A. FuhrmannThe Mathematics of Networks of Linear Systems62,99 €
-
-
-
This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book. Key features: - More terms from General Topology than any other book ever published - Short and informative articles - Authors include the majority of top researchers in the field - Extensive indexing of terms
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Elsevier Science
- Seitenzahl: 536
- Erscheinungstermin: 1. August 2004
- Englisch
- Abmessung: 289mm x 220mm x 27mm
- Gewicht: 1632g
- ISBN-13: 9780444503558
- ISBN-10: 0444503552
- Artikelnr.: 21785647
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Elsevier Science
- Seitenzahl: 536
- Erscheinungstermin: 1. August 2004
- Englisch
- Abmessung: 289mm x 220mm x 27mm
- Gewicht: 1632g
- ISBN-13: 9780444503558
- ISBN-10: 0444503552
- Artikelnr.: 21785647
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
PrefaceContributorsA Generalities a
01 Topological Spaces a
02 Modified Open and Closed Sets (Semi
Open Set etc.) a
03 Cardinal Functions, Part I a
04 Cardinal Functions, Part II a
05 Convergence a
06 Several Topologies on One Set a
07 Comparison of Topologies (Minimal and Maximal Topologies)B Basic constructions b
01 Subspaces (Hereditary (P)
Spaces) b
02 Relative Properties b
03 Product Spaces b
04 Quotient Spaces and Decompositions b
05 Adjunction Spaces b
06 Hyperspaces b
07 Cleavable (Splittable) Spaces b
08 Inverse Systems and Direct Systems b
09 Covering Properties b
10 Locally (P)
Spaces b
11 Rim(P)
Spaces b
12 Categorical Topology b
13 Special SpacesC Maps and general types of spaces defined by maps c
01 Continuous and Topological Mappings c
02 Open Maps c
03 Closed Maps c
04 Perfect Maps c
05 Cell
Like Maps c
06 Extensions of Maps c
07 Topological Embeddings (Universal Spaces) c
08 Continuous Selections c
09 Multivalued Functions c
10 Applications of the Baire Category Theorem to Real Analysis c
11 Absolute Retracts c
12 Extensors c
13 Generalized Continuities c
14 Spaces of Functions in Pointwise Convergence c
15 Radon
Nikodym Compacta c
16 Corson Compacta c
17 Rosenthal Compacta c
18 Eberlein Compacta c
19 Topological Entropy c
20 Function SpacesD Fairly general properties d
01 The Low Separation Axioms T0 and T1 d
02 Higher Separation Axioms d
03 Fréchet and Sequential Spaces d
04 Pseudoradial Spaces d
05 Compactness (Local Compactness, Sigma
Compactness etc.) d
06 Countable Compactness d
07 Pseudocompact Spaces d
08 The Lindelöf Property d
09 Realcompactness d
10 k
Spaces d
11 Dyadic Compacta d
12 Paracompact Spaces d
13 Generalizations of Paracompactness d
14 Countable Paracompactness, Countable Metacompactness, and Related Concepts d
15 Extensions of Topological Spaces d
16 Remainders d
17 The Cech
Stone Compactification d
18 The Cech
Stone Compactifications of N and R d
19 Wallman
Shanin Compactification d
20 H
Closed Spaces d
21 Connectedness d
22 Connectifications d
23 Special ConstructionsE Spaces with richer structures e
01 Metric Spaces e
02 Classical Metrization Theorems e
03 Modern Metrization Theorems e
04 Special Metrics e
05 Completeness e
06 Baire Spaces e
07 Uniform Spaces, I e
08 Uniform Spaces, II e
09 Quasi
Uniform Spaces e
10 Proximity Spaces e
11 Generalized Metric Spaces, Part I e
12 Generalized Metric Spaces, Part II e
13 Generalized Metric Spaces III: Linearly Stratifiable Spaces and Analogous Classes of Spaces e
14 Monotone Normality e
15 Probabilistic Metric Spaces e
16 Approach SpacesF Special properties f
01 Continuum Theory f
02 Continuum Theory (General) f
03 Dimension Theory (General Theory) f
04 Dimension of Metrizable Spaces f
05 Dimension Theory: Infinite Dimension f
06 Zero
Dimensional Spaces f
07 Linearly Ordered and Generalized Ordered Spaces f
08 Unicoherence and Multicoherence f
09 Topological Characterizations of Separable Metrizable Zero
Dimensional Spaces f
10 Topological Characterizations of Spaces f
11 Higher
Dimensional Local ConnectednessG Special spaces g
01 Extremally Disconnected Spaces g
02 Scattered Spaces g
03 Dowker SpacesH Connections with other structures h
01 Topological Groups h
02 TopologicalRings, Division Rings, Fields and Lattices h
03 Free Topological Groups h
04 Homogeneous Spaces h
05 Transformation Groups and Semigroups h
06 Topological Discrete Dynamical Systems h
07 Fixed Point Theorems h
08 Topological Representations of Algebraic SystemsJ Influencies of other fields j
01 Descriptive Set Theory j
02 Consistency Results in Topology, I: Quotable Principles 03 Consistency Results in Topology, II: Forcing and Large Cardinals j
04 Digital Topology j
05 Computer Science and Topology j
06 Non Standard Topology j
07 Topological Games j
08 Fuzzy Topological SpacesK Connections with other fields k
01 Banach Spaces and Topology (I) k
02 Banach Spaces (and Topology) (II) k
03 Measure Theory, I k
04 Measure Theory, II k
05 Polyhedra and Complexes k
06 Homology k
07 Homotopy, I k
08 Homotopy, II k
09 Shape Theory k
10 Manifold k
11 Infinite
Dimensional TopologySubject index
01 Topological Spaces a
02 Modified Open and Closed Sets (Semi
Open Set etc.) a
03 Cardinal Functions, Part I a
04 Cardinal Functions, Part II a
05 Convergence a
06 Several Topologies on One Set a
07 Comparison of Topologies (Minimal and Maximal Topologies)B Basic constructions b
01 Subspaces (Hereditary (P)
Spaces) b
02 Relative Properties b
03 Product Spaces b
04 Quotient Spaces and Decompositions b
05 Adjunction Spaces b
06 Hyperspaces b
07 Cleavable (Splittable) Spaces b
08 Inverse Systems and Direct Systems b
09 Covering Properties b
10 Locally (P)
Spaces b
11 Rim(P)
Spaces b
12 Categorical Topology b
13 Special SpacesC Maps and general types of spaces defined by maps c
01 Continuous and Topological Mappings c
02 Open Maps c
03 Closed Maps c
04 Perfect Maps c
05 Cell
Like Maps c
06 Extensions of Maps c
07 Topological Embeddings (Universal Spaces) c
08 Continuous Selections c
09 Multivalued Functions c
10 Applications of the Baire Category Theorem to Real Analysis c
11 Absolute Retracts c
12 Extensors c
13 Generalized Continuities c
14 Spaces of Functions in Pointwise Convergence c
15 Radon
Nikodym Compacta c
16 Corson Compacta c
17 Rosenthal Compacta c
18 Eberlein Compacta c
19 Topological Entropy c
20 Function SpacesD Fairly general properties d
01 The Low Separation Axioms T0 and T1 d
02 Higher Separation Axioms d
03 Fréchet and Sequential Spaces d
04 Pseudoradial Spaces d
05 Compactness (Local Compactness, Sigma
Compactness etc.) d
06 Countable Compactness d
07 Pseudocompact Spaces d
08 The Lindelöf Property d
09 Realcompactness d
10 k
Spaces d
11 Dyadic Compacta d
12 Paracompact Spaces d
13 Generalizations of Paracompactness d
14 Countable Paracompactness, Countable Metacompactness, and Related Concepts d
15 Extensions of Topological Spaces d
16 Remainders d
17 The Cech
Stone Compactification d
18 The Cech
Stone Compactifications of N and R d
19 Wallman
Shanin Compactification d
20 H
Closed Spaces d
21 Connectedness d
22 Connectifications d
23 Special ConstructionsE Spaces with richer structures e
01 Metric Spaces e
02 Classical Metrization Theorems e
03 Modern Metrization Theorems e
04 Special Metrics e
05 Completeness e
06 Baire Spaces e
07 Uniform Spaces, I e
08 Uniform Spaces, II e
09 Quasi
Uniform Spaces e
10 Proximity Spaces e
11 Generalized Metric Spaces, Part I e
12 Generalized Metric Spaces, Part II e
13 Generalized Metric Spaces III: Linearly Stratifiable Spaces and Analogous Classes of Spaces e
14 Monotone Normality e
15 Probabilistic Metric Spaces e
16 Approach SpacesF Special properties f
01 Continuum Theory f
02 Continuum Theory (General) f
03 Dimension Theory (General Theory) f
04 Dimension of Metrizable Spaces f
05 Dimension Theory: Infinite Dimension f
06 Zero
Dimensional Spaces f
07 Linearly Ordered and Generalized Ordered Spaces f
08 Unicoherence and Multicoherence f
09 Topological Characterizations of Separable Metrizable Zero
Dimensional Spaces f
10 Topological Characterizations of Spaces f
11 Higher
Dimensional Local ConnectednessG Special spaces g
01 Extremally Disconnected Spaces g
02 Scattered Spaces g
03 Dowker SpacesH Connections with other structures h
01 Topological Groups h
02 TopologicalRings, Division Rings, Fields and Lattices h
03 Free Topological Groups h
04 Homogeneous Spaces h
05 Transformation Groups and Semigroups h
06 Topological Discrete Dynamical Systems h
07 Fixed Point Theorems h
08 Topological Representations of Algebraic SystemsJ Influencies of other fields j
01 Descriptive Set Theory j
02 Consistency Results in Topology, I: Quotable Principles 03 Consistency Results in Topology, II: Forcing and Large Cardinals j
04 Digital Topology j
05 Computer Science and Topology j
06 Non Standard Topology j
07 Topological Games j
08 Fuzzy Topological SpacesK Connections with other fields k
01 Banach Spaces and Topology (I) k
02 Banach Spaces (and Topology) (II) k
03 Measure Theory, I k
04 Measure Theory, II k
05 Polyhedra and Complexes k
06 Homology k
07 Homotopy, I k
08 Homotopy, II k
09 Shape Theory k
10 Manifold k
11 Infinite
Dimensional TopologySubject index
PrefaceContributorsA Generalities a
01 Topological Spaces a
02 Modified Open and Closed Sets (Semi
Open Set etc.) a
03 Cardinal Functions, Part I a
04 Cardinal Functions, Part II a
05 Convergence a
06 Several Topologies on One Set a
07 Comparison of Topologies (Minimal and Maximal Topologies)B Basic constructions b
01 Subspaces (Hereditary (P)
Spaces) b
02 Relative Properties b
03 Product Spaces b
04 Quotient Spaces and Decompositions b
05 Adjunction Spaces b
06 Hyperspaces b
07 Cleavable (Splittable) Spaces b
08 Inverse Systems and Direct Systems b
09 Covering Properties b
10 Locally (P)
Spaces b
11 Rim(P)
Spaces b
12 Categorical Topology b
13 Special SpacesC Maps and general types of spaces defined by maps c
01 Continuous and Topological Mappings c
02 Open Maps c
03 Closed Maps c
04 Perfect Maps c
05 Cell
Like Maps c
06 Extensions of Maps c
07 Topological Embeddings (Universal Spaces) c
08 Continuous Selections c
09 Multivalued Functions c
10 Applications of the Baire Category Theorem to Real Analysis c
11 Absolute Retracts c
12 Extensors c
13 Generalized Continuities c
14 Spaces of Functions in Pointwise Convergence c
15 Radon
Nikodym Compacta c
16 Corson Compacta c
17 Rosenthal Compacta c
18 Eberlein Compacta c
19 Topological Entropy c
20 Function SpacesD Fairly general properties d
01 The Low Separation Axioms T0 and T1 d
02 Higher Separation Axioms d
03 Fréchet and Sequential Spaces d
04 Pseudoradial Spaces d
05 Compactness (Local Compactness, Sigma
Compactness etc.) d
06 Countable Compactness d
07 Pseudocompact Spaces d
08 The Lindelöf Property d
09 Realcompactness d
10 k
Spaces d
11 Dyadic Compacta d
12 Paracompact Spaces d
13 Generalizations of Paracompactness d
14 Countable Paracompactness, Countable Metacompactness, and Related Concepts d
15 Extensions of Topological Spaces d
16 Remainders d
17 The Cech
Stone Compactification d
18 The Cech
Stone Compactifications of N and R d
19 Wallman
Shanin Compactification d
20 H
Closed Spaces d
21 Connectedness d
22 Connectifications d
23 Special ConstructionsE Spaces with richer structures e
01 Metric Spaces e
02 Classical Metrization Theorems e
03 Modern Metrization Theorems e
04 Special Metrics e
05 Completeness e
06 Baire Spaces e
07 Uniform Spaces, I e
08 Uniform Spaces, II e
09 Quasi
Uniform Spaces e
10 Proximity Spaces e
11 Generalized Metric Spaces, Part I e
12 Generalized Metric Spaces, Part II e
13 Generalized Metric Spaces III: Linearly Stratifiable Spaces and Analogous Classes of Spaces e
14 Monotone Normality e
15 Probabilistic Metric Spaces e
16 Approach SpacesF Special properties f
01 Continuum Theory f
02 Continuum Theory (General) f
03 Dimension Theory (General Theory) f
04 Dimension of Metrizable Spaces f
05 Dimension Theory: Infinite Dimension f
06 Zero
Dimensional Spaces f
07 Linearly Ordered and Generalized Ordered Spaces f
08 Unicoherence and Multicoherence f
09 Topological Characterizations of Separable Metrizable Zero
Dimensional Spaces f
10 Topological Characterizations of Spaces f
11 Higher
Dimensional Local ConnectednessG Special spaces g
01 Extremally Disconnected Spaces g
02 Scattered Spaces g
03 Dowker SpacesH Connections with other structures h
01 Topological Groups h
02 TopologicalRings, Division Rings, Fields and Lattices h
03 Free Topological Groups h
04 Homogeneous Spaces h
05 Transformation Groups and Semigroups h
06 Topological Discrete Dynamical Systems h
07 Fixed Point Theorems h
08 Topological Representations of Algebraic SystemsJ Influencies of other fields j
01 Descriptive Set Theory j
02 Consistency Results in Topology, I: Quotable Principles 03 Consistency Results in Topology, II: Forcing and Large Cardinals j
04 Digital Topology j
05 Computer Science and Topology j
06 Non Standard Topology j
07 Topological Games j
08 Fuzzy Topological SpacesK Connections with other fields k
01 Banach Spaces and Topology (I) k
02 Banach Spaces (and Topology) (II) k
03 Measure Theory, I k
04 Measure Theory, II k
05 Polyhedra and Complexes k
06 Homology k
07 Homotopy, I k
08 Homotopy, II k
09 Shape Theory k
10 Manifold k
11 Infinite
Dimensional TopologySubject index
01 Topological Spaces a
02 Modified Open and Closed Sets (Semi
Open Set etc.) a
03 Cardinal Functions, Part I a
04 Cardinal Functions, Part II a
05 Convergence a
06 Several Topologies on One Set a
07 Comparison of Topologies (Minimal and Maximal Topologies)B Basic constructions b
01 Subspaces (Hereditary (P)
Spaces) b
02 Relative Properties b
03 Product Spaces b
04 Quotient Spaces and Decompositions b
05 Adjunction Spaces b
06 Hyperspaces b
07 Cleavable (Splittable) Spaces b
08 Inverse Systems and Direct Systems b
09 Covering Properties b
10 Locally (P)
Spaces b
11 Rim(P)
Spaces b
12 Categorical Topology b
13 Special SpacesC Maps and general types of spaces defined by maps c
01 Continuous and Topological Mappings c
02 Open Maps c
03 Closed Maps c
04 Perfect Maps c
05 Cell
Like Maps c
06 Extensions of Maps c
07 Topological Embeddings (Universal Spaces) c
08 Continuous Selections c
09 Multivalued Functions c
10 Applications of the Baire Category Theorem to Real Analysis c
11 Absolute Retracts c
12 Extensors c
13 Generalized Continuities c
14 Spaces of Functions in Pointwise Convergence c
15 Radon
Nikodym Compacta c
16 Corson Compacta c
17 Rosenthal Compacta c
18 Eberlein Compacta c
19 Topological Entropy c
20 Function SpacesD Fairly general properties d
01 The Low Separation Axioms T0 and T1 d
02 Higher Separation Axioms d
03 Fréchet and Sequential Spaces d
04 Pseudoradial Spaces d
05 Compactness (Local Compactness, Sigma
Compactness etc.) d
06 Countable Compactness d
07 Pseudocompact Spaces d
08 The Lindelöf Property d
09 Realcompactness d
10 k
Spaces d
11 Dyadic Compacta d
12 Paracompact Spaces d
13 Generalizations of Paracompactness d
14 Countable Paracompactness, Countable Metacompactness, and Related Concepts d
15 Extensions of Topological Spaces d
16 Remainders d
17 The Cech
Stone Compactification d
18 The Cech
Stone Compactifications of N and R d
19 Wallman
Shanin Compactification d
20 H
Closed Spaces d
21 Connectedness d
22 Connectifications d
23 Special ConstructionsE Spaces with richer structures e
01 Metric Spaces e
02 Classical Metrization Theorems e
03 Modern Metrization Theorems e
04 Special Metrics e
05 Completeness e
06 Baire Spaces e
07 Uniform Spaces, I e
08 Uniform Spaces, II e
09 Quasi
Uniform Spaces e
10 Proximity Spaces e
11 Generalized Metric Spaces, Part I e
12 Generalized Metric Spaces, Part II e
13 Generalized Metric Spaces III: Linearly Stratifiable Spaces and Analogous Classes of Spaces e
14 Monotone Normality e
15 Probabilistic Metric Spaces e
16 Approach SpacesF Special properties f
01 Continuum Theory f
02 Continuum Theory (General) f
03 Dimension Theory (General Theory) f
04 Dimension of Metrizable Spaces f
05 Dimension Theory: Infinite Dimension f
06 Zero
Dimensional Spaces f
07 Linearly Ordered and Generalized Ordered Spaces f
08 Unicoherence and Multicoherence f
09 Topological Characterizations of Separable Metrizable Zero
Dimensional Spaces f
10 Topological Characterizations of Spaces f
11 Higher
Dimensional Local ConnectednessG Special spaces g
01 Extremally Disconnected Spaces g
02 Scattered Spaces g
03 Dowker SpacesH Connections with other structures h
01 Topological Groups h
02 TopologicalRings, Division Rings, Fields and Lattices h
03 Free Topological Groups h
04 Homogeneous Spaces h
05 Transformation Groups and Semigroups h
06 Topological Discrete Dynamical Systems h
07 Fixed Point Theorems h
08 Topological Representations of Algebraic SystemsJ Influencies of other fields j
01 Descriptive Set Theory j
02 Consistency Results in Topology, I: Quotable Principles 03 Consistency Results in Topology, II: Forcing and Large Cardinals j
04 Digital Topology j
05 Computer Science and Topology j
06 Non Standard Topology j
07 Topological Games j
08 Fuzzy Topological SpacesK Connections with other fields k
01 Banach Spaces and Topology (I) k
02 Banach Spaces (and Topology) (II) k
03 Measure Theory, I k
04 Measure Theory, II k
05 Polyhedra and Complexes k
06 Homology k
07 Homotopy, I k
08 Homotopy, II k
09 Shape Theory k
10 Manifold k
11 Infinite
Dimensional TopologySubject index