Describes energy deposition using direct current (DC), microwave and laser discharge for flow control at high speeds.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Doyle D. Knight is Distinguished Professor of Aerospace and Mechanical Engineering at Rutgers University, New Jersey. His research interests include gas dynamics and design optimization. His research in gas dynamics includes shock wave boundary layer interaction, incipient separation on pitching airfoils, turbulence model development, high speed inlet unstart and effects of unsteady energy deposition in supersonic flows. His research activity in design optimization focuses on the application of computational fluid dynamics to the automated optimal design of high speed air vehicles. He is the author of Elements of Numerical Methods for Compressible Flows (Cambridge, 2006).
Inhaltsangabe
1. Introduction 2. Fundamental equations 3. Statistical mechanics and continuum physics 4. Dynamics and kinetics pacetoken of charged particles 5. DC discharge 6. Microwave discharge 7. Laser discharge 8. Modeling energy deposition pacetoken as an ideal gas 9. Flow control in aerodynamics.
1. Introduction 2. Fundamental equations 3. Statistical mechanics and continuum physics 4. Dynamics and kinetics pacetoken of charged particles 5. DC discharge 6. Microwave discharge 7. Laser discharge 8. Modeling energy deposition pacetoken as an ideal gas 9. Flow control in aerodynamics.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826