This is the first of two volumes introducing structural and continuum mechanics in a comprehensive and consistent way. The current book presents all theoretical developments both in text and by means of an extensive set of figures. This same approach is used in the many examples, drawings and problems. Both formal and intuitive (engineering) arguments are used in parallel to derive the principles used, for instance in bending moment diagrams and shear force diagrams. A very important aspect of this book is the straightforward and consistent sign convention, based on the stress definitions of continuum mechanics. The book is suitable for self-education.…mehr
This is the first of two volumes introducing structural and continuum mechanics in a comprehensive and consistent way. The current book presents all theoretical developments both in text and by means of an extensive set of figures. This same approach is used in the many examples, drawings and problems. Both formal and intuitive (engineering) arguments are used in parallel to derive the principles used, for instance in bending moment diagrams and shear force diagrams. A very important aspect of this book is the straightforward and consistent sign convention, based on the stress definitions of continuum mechanics. The book is suitable for self-education.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Statics of a Particle.- Statics of a Rigid Body.- Structures.- Calculating Support Reactions and Interaction Forces.- Loads.- Gas Pressure and Hydrostatic Pressure.- Earth Pressures.- Trusses.- Section Forces.- Mathematical Description of the Relationship between Section Forces and Loading.- Bending Moment, Shear Force and Normal Force Diagrams.- Calculating M, V and N Diagrams.- Cables, Lines of Force and Structural Shapes.- Virtual Work.- Influence Lines.
Preface; Foreword; 1 Material Behaviour; 1.1 Tensile test; 1.2 Stress-strain diagrams; 1.3 Hooke's Law; 2 Bar Subject to Extension; 2.1 The fibre model; 2.2 The three basic relationships; 2.3 Strain diagram and normal stress diagram; 2.4 Normal centre and bar axis; 2.5 Mathematical description of the extension problem; 2.6 Examples relating to change in length and displacement; 2.7 Examples relating to the differential equation for extension; 2.8 Formal approach and engineering practice; 2.9 Problems; 3 Cross-Sectional Properties; 3.1 First moments of area; centroid and normal centre; 3.2 Second moments of area; 3.3 Thin-walled cross-sections; 3.4 Formal approach and engineering practice; 3.5 Problems; 4 Members Subject to Bending and Extension; 4.1 The fibre model; 4.2 Strain diagram and neutral axis; 4.3 The three basic relationships; 4.4 Stress formula and stress diagram; 4.5 Examples relating to the stress formula for bending with extension; 4.6 Section modulus; 4.7 Examples of the stress formula related to bending without extension; 4.8 General stress formula related to the principal directions; 4.9 Core of the cross-section; 4.10 Applications related to the core of the cross-section; 4.11 Mathematical description of the problem of bending with extension; 4.12 Thermal effects; 4.13 Notes for the fibre model and summary of the formulas; 4.14 Problems; 5 Shear Forces and Shear Stresses Due to Bending; 5.1 Shear forces and shear stresses in longitudinal direction; 5.2 Examples relating to shear forces and shear stresses in the longitudinal direction; 5.3 Shear stresses on a cross-sectional plane; 5.4 Examples relating to the shear stress distribution in a cross-section; 5.5 Shear centre; 5.6 Other cases of shear; 5.7 Summary of the formulas and rules; 5.8 Problems; 6 Bar Subject to Torsion; 6.1 Material behaviour in shear; 6.2 Torsion of bars with circular cross-section; 6.3 Torsion of thin-walled cross-sections; 6.4 Numerical examples; 6.5 Summary of theformulas; 6.6 Problems; 7 Deformation of Trusses; 7.1 The behaviour of a single truss member; 7.2 Williot diagram; 7.3 Williot diagram with rigid-body rotation; 7.4 Williot-Mohr diagram; 7.5 Problems; 8 Deformation Due to Bending; 8.1 Direct determination from the moment distribution; 8.2 Differential equation for bending; 8.3 Forget-me-nots; 8.4 Moment area theorems; 8.5 Simply supported beams and the M/EI diagram; 8.6 Problems; 9 Unsymmetrical and Inhomogeneous Cross-Sections; 9.1 Sketch of the problems and required assumptions; 9.2 Kinematic relationships; 9.3 Curvature and neutral axis; 9.4 Normal force and bending moments - centre of force; 9.5 Constitutive relationships for unsymmetrical and/or inhomogeneous cross-sections; 9.6 Plane of loading and plane of curvature - neutral axis; 9.7 The normal centre NC for inhomogeneous cross-sections; 9.8 Stresses due to extension and bending - a straightforward method; 9.9 Applications of the straightforward method; 9.10 Stresses in
Statics of a Particle.- Statics of a Rigid Body.- Structures.- Calculating Support Reactions and Interaction Forces.- Loads.- Gas Pressure and Hydrostatic Pressure.- Earth Pressures.- Trusses.- Section Forces.- Mathematical Description of the Relationship between Section Forces and Loading.- Bending Moment, Shear Force and Normal Force Diagrams.- Calculating M, V and N Diagrams.- Cables, Lines of Force and Structural Shapes.- Virtual Work.- Influence Lines.
Preface; Foreword; 1 Material Behaviour; 1.1 Tensile test; 1.2 Stress-strain diagrams; 1.3 Hooke's Law; 2 Bar Subject to Extension; 2.1 The fibre model; 2.2 The three basic relationships; 2.3 Strain diagram and normal stress diagram; 2.4 Normal centre and bar axis; 2.5 Mathematical description of the extension problem; 2.6 Examples relating to change in length and displacement; 2.7 Examples relating to the differential equation for extension; 2.8 Formal approach and engineering practice; 2.9 Problems; 3 Cross-Sectional Properties; 3.1 First moments of area; centroid and normal centre; 3.2 Second moments of area; 3.3 Thin-walled cross-sections; 3.4 Formal approach and engineering practice; 3.5 Problems; 4 Members Subject to Bending and Extension; 4.1 The fibre model; 4.2 Strain diagram and neutral axis; 4.3 The three basic relationships; 4.4 Stress formula and stress diagram; 4.5 Examples relating to the stress formula for bending with extension; 4.6 Section modulus; 4.7 Examples of the stress formula related to bending without extension; 4.8 General stress formula related to the principal directions; 4.9 Core of the cross-section; 4.10 Applications related to the core of the cross-section; 4.11 Mathematical description of the problem of bending with extension; 4.12 Thermal effects; 4.13 Notes for the fibre model and summary of the formulas; 4.14 Problems; 5 Shear Forces and Shear Stresses Due to Bending; 5.1 Shear forces and shear stresses in longitudinal direction; 5.2 Examples relating to shear forces and shear stresses in the longitudinal direction; 5.3 Shear stresses on a cross-sectional plane; 5.4 Examples relating to the shear stress distribution in a cross-section; 5.5 Shear centre; 5.6 Other cases of shear; 5.7 Summary of the formulas and rules; 5.8 Problems; 6 Bar Subject to Torsion; 6.1 Material behaviour in shear; 6.2 Torsion of bars with circular cross-section; 6.3 Torsion of thin-walled cross-sections; 6.4 Numerical examples; 6.5 Summary of theformulas; 6.6 Problems; 7 Deformation of Trusses; 7.1 The behaviour of a single truss member; 7.2 Williot diagram; 7.3 Williot diagram with rigid-body rotation; 7.4 Williot-Mohr diagram; 7.5 Problems; 8 Deformation Due to Bending; 8.1 Direct determination from the moment distribution; 8.2 Differential equation for bending; 8.3 Forget-me-nots; 8.4 Moment area theorems; 8.5 Simply supported beams and the M/EI diagram; 8.6 Problems; 9 Unsymmetrical and Inhomogeneous Cross-Sections; 9.1 Sketch of the problems and required assumptions; 9.2 Kinematic relationships; 9.3 Curvature and neutral axis; 9.4 Normal force and bending moments - centre of force; 9.5 Constitutive relationships for unsymmetrical and/or inhomogeneous cross-sections; 9.6 Plane of loading and plane of curvature - neutral axis; 9.7 The normal centre NC for inhomogeneous cross-sections; 9.8 Stresses due to extension and bending - a straightforward method; 9.9 Applications of the straightforward method; 9.10 Stresses in
Rezensionen
From the reviews:
"The book provides a well-organized and comprehensive treatment of static analysis in various topics ... . The concepts and applications are well presented; applications include both basic and advanced levels. Worked out examples nicely illustrate concepts; figures and tables are clear and help with understanding the concepts. ... Each chapter has a large number of assigned problems, helping readers to understand the material. ... very well written work and a welcome addition to the literature of engineering mechanics. Summing Up: Recommended. Lower-division undergraduates through professionals." (M. G. Prasad, CHOICE, Vol. 44 (10), June, 2007)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826