174,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.…mehr

Produktbeschreibung
There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
DOYEOL AHN, PHD, is WB Distinguished Professor of Quantum Electronics in the Department of Electrical and Computer Engineering at the University of Seoul (Korea). A Fellow of the American Physical Society and an IEEE Fellow, he has coauthored more than 190 refereed journal papers and three book chapters, and holds seven U.S. patents to date. SEOUNG-HWAN PARK, PHD, is Professor in the Department of Electronics Engineering at the Catholic University of Daegu (Korea). He has written two book chapters and coauthored more than 160 refereed journal and conference papers.
Rezensionen
"Ahn (quantum electronics, U. of Seoul) and Park (electronic engineering, Catholic U. of Daegu, Korea) present a textbook for graduate and advanced undergraduate students in electrical engineering, physics, and materials science and engineering on quantum mechanics as it is increasingly being used in these fields. It also provides the necessary theoretical background for researchers in optoelectronics or semiconductor devices." (Book News, 1 October 2011)