Enhancing Variants of K-Means

Enhancing Variants of K-Means

Versandkostenfrei!
Versandfertig in 6-10 Tagen
26,99 €
inkl. MwSt.
PAYBACK Punkte
13 °P sammeln!
Clustering analysis is one of the most commonly used data processing algorithms. Over half a century, K-means remains the most popular clustering algorithm because of its simplicity. Traditional K-means clustering tries to assign n data objects to k clusters starting with random initial centers. However, most of the k- means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose a fast heuristic to overcome this bottleneck with only marginal increase in Mean Squared Error (MSE). We observe that across all iterations of K-means, a data poin...