With the dramatic development of air-space-ground-sea environmental monitoring networks and large-scale high-resolution Earth simulators, Environmental science is facing opportunities and challenges of big data. Environmental Data Analysis focuses on state-of-the-art models and methods for big environmental data and demonstrates their applications through various case studies in the real world. It covers the comprehensive range of topics in data analysis in space, time and spectral domains, including linear and nonlinear environmental systems, feature extraction models, data envelopment…mehr
With the dramatic development of air-space-ground-sea environmental monitoring networks and large-scale high-resolution Earth simulators, Environmental science is facing opportunities and challenges of big data. Environmental Data Analysis focuses on state-of-the-art models and methods for big environmental data and demonstrates their applications through various case studies in the real world. It covers the comprehensive range of topics in data analysis in space, time and spectral domains, including linear and nonlinear environmental systems, feature extraction models, data envelopment analysis, risk assessments, and life cycle assessments. The 2nd Edition adds emerging network models, including neural networks, complex networks, downscaling analysis and streaming data on network.
This book is a concise and self-contained work with enormous amount of information. It is a must-read for environmental scientists who struggle to conduct big data mining and data scientists who try to find the way into environmental science. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Zhihua Zhang is a Taishan Distinguished Professor at Shandong University, China. His research interests are Big Data Mining, Climate Change Mechanisms, Environmental Evolution and Sustainability. He has published 6 first-authored books in Elsevier/Springer/DeGruyter and published more than 60 first-authored articles, some of which were reported by New Scientist (UK), China Science Daily, and China Social Science Daily. Prof. Zhang is serving as the Editor-in-Chief of Int J Big Data Mining for Global Warming (World Scientific), Topical Chief Editor of Arab J Geosci (Springer), Associate Editor of Environ Dev Sustain (Springer), Associate Editor of EURASIP J Adv Signal Process (Springer), Associate Editor of Int J Climate Change Strat & Manag (Emerald), etc.
Inhaltsangabe
Table of content: Preface Chapter 1. Time Series Analysis 1.1. State Estimation 1.2. Power Spectrum 1.3. Optimal Filtering 1.4. State Space Models 1.5. Information Theory 1.6. Complex Networks Chapter 2. Dynamical Systems 2.1. State-Space Reconstruction 2.2. Determinism and Predictability 2.3. Embedding Methods 2.4. Lyapunov Exponents 2.5. Modelling and Forecasting 2.6. Chaos and nonlinear noise reduction Chapter 3. Approximation 3.1. Trigonometric Approximation 3.2. Polynomial Approximation 3.3. Spline Approximation 3.4. Rational Approximation 3.5. Wavelet Approximation 3.6. Multivariate Approximation 3.7. Dimensionality reduction 3.8. Adaptive Basis Selection and Greedy Algorithm Chapter 4. Interpolation 4.1. Curve Fitting 4.2. Lagrange Interpolation 4.3. Hermite Interpolation 4.4. Spline Interpolation 4.5. Case Studies Chapter 5. Satistical Methods 5.1. Linear Regression 5.2. Logistic Regression 5.3. Multiple Regression 5.4. Analysis of Covariance 5.5. Cluster Analysis 5.6. Discriminant Analysis. 5.7. Principal Component Analysis 5.8. Factor Analysis 5.9. SPSS software Chapter 6. Numerical Methods 6.1. Numerical Integration 6.2. Numerical Differentiation 6.3. Direct and Iterative Methods 6.4. Finite Difference Methods. 6.5. Finite Element Methods. 6.6. Finite Volume Methods 6.7. Wavelet Methods Chapter 7. Optimization 7.1. Steepest Descent and Newton methods 7.2. Linear optimization 7.3. Lagrange multipliers 7.4. Karush-Kuhn-Tucker conditions 7.5. Primal-dual interior-point method 7.6. The simplex method 7.7. Stochastic optimization Chapter 8. Risk Assessments Chapter 9. Life Cycle Assessments
Table of content: Preface Chapter 1. Time Series Analysis 1.1. State Estimation 1.2. Power Spectrum 1.3. Optimal Filtering 1.4. State Space Models 1.5. Information Theory 1.6. Complex Networks Chapter 2. Dynamical Systems 2.1. State-Space Reconstruction 2.2. Determinism and Predictability 2.3. Embedding Methods 2.4. Lyapunov Exponents 2.5. Modelling and Forecasting 2.6. Chaos and nonlinear noise reduction Chapter 3. Approximation 3.1. Trigonometric Approximation 3.2. Polynomial Approximation 3.3. Spline Approximation 3.4. Rational Approximation 3.5. Wavelet Approximation 3.6. Multivariate Approximation 3.7. Dimensionality reduction 3.8. Adaptive Basis Selection and Greedy Algorithm Chapter 4. Interpolation 4.1. Curve Fitting 4.2. Lagrange Interpolation 4.3. Hermite Interpolation 4.4. Spline Interpolation 4.5. Case Studies Chapter 5. Satistical Methods 5.1. Linear Regression 5.2. Logistic Regression 5.3. Multiple Regression 5.4. Analysis of Covariance 5.5. Cluster Analysis 5.6. Discriminant Analysis. 5.7. Principal Component Analysis 5.8. Factor Analysis 5.9. SPSS software Chapter 6. Numerical Methods 6.1. Numerical Integration 6.2. Numerical Differentiation 6.3. Direct and Iterative Methods 6.4. Finite Difference Methods. 6.5. Finite Element Methods. 6.6. Finite Volume Methods 6.7. Wavelet Methods Chapter 7. Optimization 7.1. Steepest Descent and Newton methods 7.2. Linear optimization 7.3. Lagrange multipliers 7.4. Karush-Kuhn-Tucker conditions 7.5. Primal-dual interior-point method 7.6. The simplex method 7.7. Stochastic optimization Chapter 8. Risk Assessments Chapter 9. Life Cycle Assessments
Rezensionen
"Den Anspruch, ein wenig beachtetes Kapitel der Utopiegeschichte zwischen bürgerlichem Realismus und Neuer Sachlichkeit aufzuarbeiten und dabei auch ihre sich wandelnde Dynamik im Austausch mit anderen Diskursen zu rekonstruieren, löst die Studie zweifellos ein. Bedeutsamer noch als diese Revision der Utopiegeschichte ist jedoch vielleicht ein anderes Verdienst: Die Untersuchung vermag die Gattung tatsächlich als 'Schauplatz politischer Imaginationsbildung' zu konturieren und erschließt damit ein bisher kaum beachtetes 'Erklärungspotenzial' der Utopie [...]." Linda Maeding in: Literaturkritik.de 2017, www.literaturkritik.de
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826