123,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
62 °P sammeln
  • Gebundenes Buch

This book focuses on the impacts of anthropogenic radiation on wildlife and ecosystems and provides an in-depth look at the approaches and available tools we can use to gain information about biological effects of radiation in the environment.
The nuclear accidents in Chornobyl in 1986 and Fukushima in 2011 focussed the attention of the world on the vulnerability of ecosystems to radiation. In Chornobyl, there still remains an exclusion zone where levels are considered to be too high for people and impacts on terrestrial and aquatic ecosystems can still be measured 35 years later. In the…mehr

Produktbeschreibung
This book focuses on the impacts of anthropogenic radiation on wildlife and ecosystems and provides an in-depth look at the approaches and available tools we can use to gain information about biological effects of radiation in the environment.

The nuclear accidents in Chornobyl in 1986 and Fukushima in 2011 focussed the attention of the world on the vulnerability of ecosystems to radiation. In Chornobyl, there still remains an exclusion zone where levels are considered to be too high for people and impacts on terrestrial and aquatic ecosystems can still be measured 35 years later. In the area impacted by the Fukushima disaster, intense remediation is still under way at tremendous cost and causing widespread disruption to the environment. That accident impacted the terrestrial and marine ecosystems. In both accidents it became obvious that a radiation protection framework focussing on protection of "humans" (a single species) and using evacuation as a key strategy, was not sufficient to protect the natural environment. The complexity of ecosystems makes developing a protection framework very challenging but in order to even start the process it is vital to gather information about likely impacts of low dose exposures on wildlife and to develop monitoring tools to measure changes over time. This book contains reviews and original research aimed at filling our knowledge gaps about these important areas.

Environmental Radiobiology will be a key resource for academics, researchers, and advanced students of Radiobiology, Radioecology, Biology, Ecology, Biomedicine and Research Methods. The chapters included in this book were originally published as a special issue of International Journal of Radiation Biology.
Autorenporträt
Paul N. Schofield is the University Professor of Biomedical Informatics at the University of Cambridge, UK, and an Adjunct Professor at The Jackson Laboratory, USA. His research focus is on experimental and informatics approaches to understanding human disease using model organisms. He has a long-standing interest in the biological effects of low dose ionizing radiation and FAIR data in radiobiology. Carmel E. Mothersill is an Environmental Radiobiologist at McMaster University, Hamilton, Canada where she studies low dose radiation effects and development of biomarkers for wildlife. Her main goal is to identify ecosystem level bioindicators of environmental impact.