Environmental Systems Engineering and Economics emphasizes the application of optimization, economics, and systems engineering to problems in environmental resources management. This senior level/graduate textbook introduces optimization theory and algorithms that have been successful in resolving water quality and groundwater management problems. Both linear programming and nonlinear optimization are presented. Multiobjective optimization and the linked simulation-optimization (LSO) methodology are also introduced. The basic principles of economics and engineering economics are also…mehr
Environmental Systems Engineering and Economics emphasizes the application of optimization, economics, and systems engineering to problems in environmental resources management. This senior level/graduate textbook introduces optimization theory and algorithms that have been successful in resolving water quality and groundwater management problems. Both linear programming and nonlinear optimization are presented. Multiobjective optimization and the linked simulation-optimization (LSO) methodology are also introduced. The basic principles of economics and engineering economics are also discussed to provide a framework for economic decision making. This text contains numerous example problems. Case studies are presented that address water resources management issues in the north China plain, the control of saltwater intrusion in Jakarta, Indonesia, and groundwater resources management in the Yun Lin basin, Taiwan.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1. Introduction to Environmental Systems Engineering.- 1.1 Introduction.- 1.2 Systems Engineering.- 1.3 Mathematical Models.- 1.4 The Systems Engineering Problem.- 1.5 Systems Engineering Problems.- 1.6 The Model Building Process.- 1.7 Simulation Modeling.- 1.8 Optimization Modeling.- References.- Problems.- 2. An Introduction to Optimization Theory.- 2.1 Introduction.- 2.2 Classification of Optimization Models.- 2.3 Geometry of the Mathematical Optimization Problem.- 2.4 Nonlinear Optimization and Types of Maxima.- 2.5 Convex Sets and Functions.- 2.6 Weierstrass Theorems.- 2.7 The Local-Global Theorem.- 2.8 The Kuhn-Tucker Conditions.- 2.9 The Kuhn-Tucker Theorem.- 2.10 Interpretation of the Lagrange Multipliers.- 2.11 The Saddle Point Problem.- 2.12 Maximin Dual Problem.- References.- Problems.- 3. Microeconomics: Theory of Production.- 3.1 Introduction.- 3.2 The Competitive Economy.- 3.3 The Production Function.- 3.4 Theory of the Firm.- 3.5 Maximum Output Model.- 3.6 Production Optimization.- 3.7 Comparative Statics of the Firm.- 3.8 Public Project Evaluation.- 3.9 Case Study 1- Agricultural Benefits.- References.- Problems.- 4. Microeconomics: Theory of the Household.- 4.1 Introduction.- 4.2 Commodity Space and Preference Relations.- 4.3 Theory of the Household.- 4.4 Comparative Statics.- 4.5 General Equilibrium.- 4.6 Market Equilibrium.- References.- Problems.- 5. Engineering Economics.- 5.1 Introduction.- 5.2 The Time Value of Money.- 5.3 Engineering Economic Formulas.- 5.4 Evaluation of Alternatives.- 5.5 Present Worth Method.- 5.6 Annual Worth Method.- 5.7 Benefit Cost Ratio.- 5.8 Internal Rate of Return.- 5.9 Depreciation and Income Tax Analysis.- 5.10 Inflation.- References.- Problems.- 6. Linear Programming.- 6.1 Introduction.- 6.2 Optimality of LinearProgramming Problems.- 6.3 Standard Form.- 6.4 Basic and Basic Feasible Solutions.- 6.5 The Simplex Algorithm.- 6.6 The Simplex Tableau.- 6.7 The Two-Phase Method.- 6.8 General Summary of the Simplex Algorithm.- 6.9 Duality.- 6.10 Matrix Representation of the Simplex Method.- 6.11 Economic Interpretation of the Dual Problem.- 6.12 The Revised Simplex Method.- 6.13 Sensitivity Analysis.- 6.14 Large-Scale Linear Programming Models.- 6.15 Case Study 1 Groundwater Planning.- References.- Problems.- 7. Nonlinear Programming.- 7.1 Introduction.- 7.2 Unconstrained Optimization Methods.- 7.3 Gradient-Based Methods.- 7.4 Constrained Optimization Methods.- 7.5 Case Study 1 North China Plain Water Management.- 7.6 Dynamic Programming.- 7.7 Case Study 2 Water Quality Management.- 7.8 linked Simulation-Optimization Methodology.- 7.9 Case Study 3 Management of Saltwater Intrusion.- 7.10 Case Study 4 Groundwater Remediation.- 7.11 Multiobjective Optimization.- 7.12 Case Study 5 Equity in Water Quality Management.- References.- Problems.- Appendix A. Review of Mathematics.- A.1 Introduction.- A.2 Analysis.- A.3 Vectors and Matrices.- A.4 Matrix Operations.- A.5 Determinants and the Matrix Inverse.- A.6 Quadratic Forms.- A.7 Scalar, Vector, and Matrix Derivatives.- A.8 Directional Derivative.- A.9 Eigenvalues and Eigenvectors.- A.10 Implicit Function Theorem.- A.ll Taylor Series.- A.12 Leibnitz's Rule.- References.- Appendix B. Classical Optimization.- B.1 Introduction.- B.2 The Unconstrained Optimization Problem.- B.3 The Lagrange Multiplier Method.- B.4 The Lagrange Multiplier.- References.
1. Introduction to Environmental Systems Engineering.- 1.1 Introduction.- 1.2 Systems Engineering.- 1.3 Mathematical Models.- 1.4 The Systems Engineering Problem.- 1.5 Systems Engineering Problems.- 1.6 The Model Building Process.- 1.7 Simulation Modeling.- 1.8 Optimization Modeling.- References.- Problems.- 2. An Introduction to Optimization Theory.- 2.1 Introduction.- 2.2 Classification of Optimization Models.- 2.3 Geometry of the Mathematical Optimization Problem.- 2.4 Nonlinear Optimization and Types of Maxima.- 2.5 Convex Sets and Functions.- 2.6 Weierstrass Theorems.- 2.7 The Local-Global Theorem.- 2.8 The Kuhn-Tucker Conditions.- 2.9 The Kuhn-Tucker Theorem.- 2.10 Interpretation of the Lagrange Multipliers.- 2.11 The Saddle Point Problem.- 2.12 Maximin Dual Problem.- References.- Problems.- 3. Microeconomics: Theory of Production.- 3.1 Introduction.- 3.2 The Competitive Economy.- 3.3 The Production Function.- 3.4 Theory of the Firm.- 3.5 Maximum Output Model.- 3.6 Production Optimization.- 3.7 Comparative Statics of the Firm.- 3.8 Public Project Evaluation.- 3.9 Case Study 1- Agricultural Benefits.- References.- Problems.- 4. Microeconomics: Theory of the Household.- 4.1 Introduction.- 4.2 Commodity Space and Preference Relations.- 4.3 Theory of the Household.- 4.4 Comparative Statics.- 4.5 General Equilibrium.- 4.6 Market Equilibrium.- References.- Problems.- 5. Engineering Economics.- 5.1 Introduction.- 5.2 The Time Value of Money.- 5.3 Engineering Economic Formulas.- 5.4 Evaluation of Alternatives.- 5.5 Present Worth Method.- 5.6 Annual Worth Method.- 5.7 Benefit Cost Ratio.- 5.8 Internal Rate of Return.- 5.9 Depreciation and Income Tax Analysis.- 5.10 Inflation.- References.- Problems.- 6. Linear Programming.- 6.1 Introduction.- 6.2 Optimality of LinearProgramming Problems.- 6.3 Standard Form.- 6.4 Basic and Basic Feasible Solutions.- 6.5 The Simplex Algorithm.- 6.6 The Simplex Tableau.- 6.7 The Two-Phase Method.- 6.8 General Summary of the Simplex Algorithm.- 6.9 Duality.- 6.10 Matrix Representation of the Simplex Method.- 6.11 Economic Interpretation of the Dual Problem.- 6.12 The Revised Simplex Method.- 6.13 Sensitivity Analysis.- 6.14 Large-Scale Linear Programming Models.- 6.15 Case Study 1 Groundwater Planning.- References.- Problems.- 7. Nonlinear Programming.- 7.1 Introduction.- 7.2 Unconstrained Optimization Methods.- 7.3 Gradient-Based Methods.- 7.4 Constrained Optimization Methods.- 7.5 Case Study 1 North China Plain Water Management.- 7.6 Dynamic Programming.- 7.7 Case Study 2 Water Quality Management.- 7.8 linked Simulation-Optimization Methodology.- 7.9 Case Study 3 Management of Saltwater Intrusion.- 7.10 Case Study 4 Groundwater Remediation.- 7.11 Multiobjective Optimization.- 7.12 Case Study 5 Equity in Water Quality Management.- References.- Problems.- Appendix A. Review of Mathematics.- A.1 Introduction.- A.2 Analysis.- A.3 Vectors and Matrices.- A.4 Matrix Operations.- A.5 Determinants and the Matrix Inverse.- A.6 Quadratic Forms.- A.7 Scalar, Vector, and Matrix Derivatives.- A.8 Directional Derivative.- A.9 Eigenvalues and Eigenvectors.- A.10 Implicit Function Theorem.- A.ll Taylor Series.- A.12 Leibnitz's Rule.- References.- Appendix B. Classical Optimization.- B.1 Introduction.- B.2 The Unconstrained Optimization Problem.- B.3 The Lagrange Multiplier Method.- B.4 The Lagrange Multiplier.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826