Il testo costituisce una introduzione alla teoria delle equazioni a derivate parziali, strutturata in modo da abituare il lettore ad una sinergia tra modellistica e aspetti teorici. La prima parte riguarda le più note equazioni della fisica-matematica, idealmente raggruppate nelle tre macro-aree diffusione, propagazione e trasporto, onde e vibrazioni. Nella seconda parte si presenta la formulazione variazionale dei principali problemi iniziali e/o al bordo e la loro analisi con i metodi dell'Analisi Funzionale negli spazi di Hilbert.
Il testo costituisce una introduzione alla teoria delle equazioni a derivate parziali, strutturata in modo da abituare il lettore ad una sinergia tra modellistica e aspetti teorici. La prima parte riguarda le più note equazioni della fisica-matematica, idealmente raggruppate nelle tre macro-aree diffusione, propagazione e trasporto, onde e vibrazioni. Nella seconda parte si presenta la formulazione variazionale dei principali problemi iniziali e/o al bordo e la loro analisi con i metodi dell'Analisi Funzionale negli spazi di Hilbert.
Prof. Sandro Salsa, Dipartimento di Matematica, Politecnico di Milano, Milano, Italia.
Inhaltsangabe
1 Introduzione.- 2 Diffusione.- 3 Equazione di Laplace.- 4 Leggi di conservazione scalari ed equazioni del prim'ordine.- 5 Onde e vibrazioni.- 6 Elementi di analisi funzionale.- 7 Distribuzioni e spazi di Sobolev.- 8 Formulazione variazionale di problemi ellittici.- 9 Formulazione debole per problemi di evoluzione.
Introduzione.- Diffusione.- Equazione di Laplace.- Leggi di conservazione scalari ed equazioni del prim’ordine.- Onde e vibrazioni.- Elementi di analisi funzionale.- Distribuzioni e spazi di Sobolev.- Formulazione variazionale di problemi ellittici.- Formulazione debole per problemi di evoluzione.
1 Introduzione.- 2 Diffusione.- 3 Equazione di Laplace.- 4 Leggi di conservazione scalari ed equazioni del prim'ordine.- 5 Onde e vibrazioni.- 6 Elementi di analisi funzionale.- 7 Distribuzioni e spazi di Sobolev.- 8 Formulazione variazionale di problemi ellittici.- 9 Formulazione debole per problemi di evoluzione.
Introduzione.- Diffusione.- Equazione di Laplace.- Leggi di conservazione scalari ed equazioni del prim’ordine.- Onde e vibrazioni.- Elementi di analisi funzionale.- Distribuzioni e spazi di Sobolev.- Formulazione variazionale di problemi ellittici.- Formulazione debole per problemi di evoluzione.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497