Kevin Broughan
Equivalents of the Riemann Hypothesis 2 Hardback Volume Set
Kevin Broughan
Equivalents of the Riemann Hypothesis 2 Hardback Volume Set
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This two-volume work presents the main known equivalents to the Riemann hypothesis. Each volume can be read independently.
Andere Kunden interessierten sich auch für
- Lars Valerian Ahlfors / E. Calabi / Marston Morse / Leo Sario / Donald Clayton Spencer (eds.)Contributions to the Theory of Riemann Surfaces80,99 €
- Gerald B. FollandThe Neumann Problem for the Cauchy-Riemann Complex67,99 €
- Irwin Kra / Bernard Maskit (eds.)Riemann Surfaces and Related Topics (AM-97), Volume 97125,99 €
- Marcus Du SautoyThe Music of the Primes17,99 €
- Peter Gustav Lejeune DirichletG. Lejeune Dirichlet's Werke. Herausgegeben Auf Veranlassung Der Königlich Preussischen Akademie Der Wissenschaften, Von L. Kronecker. Vol. 146,99 €
- DkThe Math Book19,99 €
- H. PoincaréScience and hypothesis25,99 €
-
-
-
This two-volume work presents the main known equivalents to the Riemann hypothesis. Each volume can be read independently.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge-Hitachi
- Seitenzahl: 860
- Erscheinungstermin: 7. Dezember 2017
- Englisch
- Abmessung: 243mm x 163mm x 63mm
- Gewicht: 1554g
- ISBN-13: 9781108290784
- ISBN-10: 1108290787
- Artikelnr.: 48861218
- Verlag: Cambridge-Hitachi
- Seitenzahl: 860
- Erscheinungstermin: 7. Dezember 2017
- Englisch
- Abmessung: 243mm x 163mm x 63mm
- Gewicht: 1554g
- ISBN-13: 9781108290784
- ISBN-10: 1108290787
- Artikelnr.: 48861218
Kevin Broughan is Emeritus Professor in the Department of Mathematics and Statistics at the University of Waikato, New Zealand. In these two volumes he has used a unique combination of mathematical knowledge and skills. Following the publication of his Columbia University thesis, he worked on problems in topology before undertaking work on symbolic computation, leading to development of the software system SENAC. This led to a symbolic-numeric dynamical systems study of the zeta function, giving new insights into its behaviour, and was accompanied by publication of the software GL(n)pack as part of D. Goldfeld's book, Automorphic Forms and L-Functions for the Group GL(n,R). Professor Broughan has published widely on problems in prime number theory. His other achievements include co-establishing the New Zealand Mathematical Society, the School of Computing and Mathematical Sciences at the University of Waikato, and the basis for New Zealand's connection to the internet.
Volume 1. Analytic Equivalents: 1. Introduction
2. The Riemann Zeta function
3. Estimates
4. Classical equivalences
5. Euler's Totient function
6. A variety of abundant numbers
7. Robin's theorem
8. Numbers which do not satisfy Robin's inequality
9. Left, right and extremely abundant numbers
10. Other equivalents to the Riemann hypothesis
Appendix A. Tables
Appendix B. RHpack mini-manual
Bibliography
Index. Volume 2. Arithmetic Equivalents: 1. Introduction
2. Series equivalents
3. Banach and Hilbert space methods
4. The Riemann Xi function
5. The de Bruijn-Newman constant
6. Orthogonal polynomials
7. Cyclotomic polynomials
8. Integral equations
9. Weil's explicit formula, inequality and conjectures
10. Discrete measures
11. Hermitian forms
12. Dirichlet L-functions
13. Smooth numbers
14. Epilogue
Appendix A. Convergence of series
Appendix B. Complex function theory
Appendix C. The Riemann-Stieltjes integral
Appendix D. The Lebesgue integral on R
Appendix E. Fourier transform
Appendix F. The Laplace transform
Appendix G. The Mellin transform
Appendix H. The gamma function
Appendix I. Riemann Zeta function
Appendix J. Banach and Hilbert spaces
Appendix K. Miscellaneous background results
Appendix L. GRHpack mini-manual
References
Index.
2. The Riemann Zeta function
3. Estimates
4. Classical equivalences
5. Euler's Totient function
6. A variety of abundant numbers
7. Robin's theorem
8. Numbers which do not satisfy Robin's inequality
9. Left, right and extremely abundant numbers
10. Other equivalents to the Riemann hypothesis
Appendix A. Tables
Appendix B. RHpack mini-manual
Bibliography
Index. Volume 2. Arithmetic Equivalents: 1. Introduction
2. Series equivalents
3. Banach and Hilbert space methods
4. The Riemann Xi function
5. The de Bruijn-Newman constant
6. Orthogonal polynomials
7. Cyclotomic polynomials
8. Integral equations
9. Weil's explicit formula, inequality and conjectures
10. Discrete measures
11. Hermitian forms
12. Dirichlet L-functions
13. Smooth numbers
14. Epilogue
Appendix A. Convergence of series
Appendix B. Complex function theory
Appendix C. The Riemann-Stieltjes integral
Appendix D. The Lebesgue integral on R
Appendix E. Fourier transform
Appendix F. The Laplace transform
Appendix G. The Mellin transform
Appendix H. The gamma function
Appendix I. Riemann Zeta function
Appendix J. Banach and Hilbert spaces
Appendix K. Miscellaneous background results
Appendix L. GRHpack mini-manual
References
Index.
Volume 1. Analytic Equivalents: 1. Introduction
2. The Riemann Zeta function
3. Estimates
4. Classical equivalences
5. Euler's Totient function
6. A variety of abundant numbers
7. Robin's theorem
8. Numbers which do not satisfy Robin's inequality
9. Left, right and extremely abundant numbers
10. Other equivalents to the Riemann hypothesis
Appendix A. Tables
Appendix B. RHpack mini-manual
Bibliography
Index. Volume 2. Arithmetic Equivalents: 1. Introduction
2. Series equivalents
3. Banach and Hilbert space methods
4. The Riemann Xi function
5. The de Bruijn-Newman constant
6. Orthogonal polynomials
7. Cyclotomic polynomials
8. Integral equations
9. Weil's explicit formula, inequality and conjectures
10. Discrete measures
11. Hermitian forms
12. Dirichlet L-functions
13. Smooth numbers
14. Epilogue
Appendix A. Convergence of series
Appendix B. Complex function theory
Appendix C. The Riemann-Stieltjes integral
Appendix D. The Lebesgue integral on R
Appendix E. Fourier transform
Appendix F. The Laplace transform
Appendix G. The Mellin transform
Appendix H. The gamma function
Appendix I. Riemann Zeta function
Appendix J. Banach and Hilbert spaces
Appendix K. Miscellaneous background results
Appendix L. GRHpack mini-manual
References
Index.
2. The Riemann Zeta function
3. Estimates
4. Classical equivalences
5. Euler's Totient function
6. A variety of abundant numbers
7. Robin's theorem
8. Numbers which do not satisfy Robin's inequality
9. Left, right and extremely abundant numbers
10. Other equivalents to the Riemann hypothesis
Appendix A. Tables
Appendix B. RHpack mini-manual
Bibliography
Index. Volume 2. Arithmetic Equivalents: 1. Introduction
2. Series equivalents
3. Banach and Hilbert space methods
4. The Riemann Xi function
5. The de Bruijn-Newman constant
6. Orthogonal polynomials
7. Cyclotomic polynomials
8. Integral equations
9. Weil's explicit formula, inequality and conjectures
10. Discrete measures
11. Hermitian forms
12. Dirichlet L-functions
13. Smooth numbers
14. Epilogue
Appendix A. Convergence of series
Appendix B. Complex function theory
Appendix C. The Riemann-Stieltjes integral
Appendix D. The Lebesgue integral on R
Appendix E. Fourier transform
Appendix F. The Laplace transform
Appendix G. The Mellin transform
Appendix H. The gamma function
Appendix I. Riemann Zeta function
Appendix J. Banach and Hilbert spaces
Appendix K. Miscellaneous background results
Appendix L. GRHpack mini-manual
References
Index.