Intended for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics, this text introduces techniques that are essential in several areas of modern mathematics. With numerous exercises and examples, it covers the core notions and applications of equivariant cohomology.
Intended for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics, this text introduces techniques that are essential in several areas of modern mathematics. With numerous exercises and examples, it covers the core notions and applications of equivariant cohomology.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
David Anderson is Associate Professor at The Ohio State University. He works in combinatorial algebraic geometry and has written over three dozen papers on topics including Schubert calculus, Newton-Okounkov bodies, and equivariant K-theory. In 2020, he received a CAREER Award from the National Science Foundation.
Inhaltsangabe
1. Preview 2. Defining equivariant cohomology 3. Basic properties 4. Grassmannians and flag varieties 5. Localization I 6. Conics 7. Localization II 8. Toric varieties 9. Schubert calculus on Grassmannians 10. Flag varieties and Schubert polynomials 11. Degeneracy loci 12. Infinite-dimensional flag varieties 13. Symplectic flag varieties 14. Symplectic Schubert polynomials 15. Homogeneous varieties 16. The algebra of divided difference operators 17. Equivariant homology 18. Bott-_Samelson varieties and Schubert varieties 19. Structure constants A. Algebraic topology B. Specialization in equivariant Borel-_Moore homology C. Pfaffians and Q-polynomials D. Conventions for Schubert varieties E. Characteristic classes and equivariant cohomology References Notation index Subject index.
1. Preview 2. Defining equivariant cohomology 3. Basic properties 4. Grassmannians and flag varieties 5. Localization I 6. Conics 7. Localization II 8. Toric varieties 9. Schubert calculus on Grassmannians 10. Flag varieties and Schubert polynomials 11. Degeneracy loci 12. Infinite-dimensional flag varieties 13. Symplectic flag varieties 14. Symplectic Schubert polynomials 15. Homogeneous varieties 16. The algebra of divided difference operators 17. Equivariant homology 18. Bott-_Samelson varieties and Schubert varieties 19. Structure constants A. Algebraic topology B. Specialization in equivariant Borel-_Moore homology C. Pfaffians and Q-polynomials D. Conventions for Schubert varieties E. Characteristic classes and equivariant cohomology References Notation index Subject index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826