44,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
22 °P sammeln
  • Broschiertes Buch

This is a softcover reprint of the English translation of 1987 of the second edition of Bourbaki's Espaces Vectoriels Topologiques (1981).This [second edition] is a brand new book and completely supersedes the original version of nearly 30 years ago. But a lot of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, all reflecting the progress made in the field during the last three decades.Table of Contents.Chapter I: Topological vector spaces over a valued field.Chapter II: Convex sets and…mehr

Produktbeschreibung
This is a softcover reprint of the English translation of 1987 of the second edition of Bourbaki's Espaces Vectoriels Topologiques (1981).This [second edition] is a brand new book and completely supersedes the original version of nearly 30 years ago. But a lot of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, all reflecting the progress made in the field during the last three decades.Table of Contents.Chapter I: Topological vector spaces over a valued field.Chapter II: Convex sets and locally convex spaces.Chapter III: Spaces of continuous linear mappings.Chapter IV: Duality in topological vector spaces.Chapter V: Hilbert spaces (elementary theory).

Les Éléments de mathématique de Nicolas Bourbaki ont pour objet une présentation rigoureuse, systématique et sans prérequis des mathématiques depuis leurs fondements.

Ce livre est le cinquième du traité ; il est consacré aux bases de l'analyse fonctionnelle. Il contient en particulier le théorème de Hahn-Banach et le théorème de Banach-Steinhaus. Il comprend les chapitres: -1. Espaces vectoriels topologiques sur un corps value; -2. Ensembles convexes et espaces localement convexes; -3. Espaces d'applications linéaires continues; -4. La dualité dans les espaces vectoriels topologiques; -5. Espaces hilbertiens (théorie élémentaire).

Il contient également des notes historiques.

Ce volume a été publié en 1981.

Autorenporträt
N. Bourbaki, Paris, France