- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
These are econometrician Clive W. J. Granger's major essays in spectral analysis, seasonality, nonlinearity, methodology, and forecasting.
Andere Kunden interessierten sich auch für
- Clive W. J. GrangerEssays in Econometrics51,99 €
- Clive W. J. GrangerEssays in Econometrics123,99 €
- Clive W. J. GrangerEssays in Econometrics144,99 €
- Marc NerloveEssays in Panel Data Econometrics164,99 €
- Essays in Honor of Cheng Hsiao175,99 €
- Arnold ZellnerStatistics, Econometrics and Forecasting28,99 €
- Arnold ZellnerStatistics, Econometrics and Forecasting148,99 €
-
-
-
These are econometrician Clive W. J. Granger's major essays in spectral analysis, seasonality, nonlinearity, methodology, and forecasting.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 544
- Erscheinungstermin: 1. Mai 2015
- Englisch
- Abmessung: 229mm x 152mm x 29mm
- Gewicht: 778g
- ISBN-13: 9780521774963
- ISBN-10: 0521774969
- Artikelnr.: 21890682
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 544
- Erscheinungstermin: 1. Mai 2015
- Englisch
- Abmessung: 229mm x 152mm x 29mm
- Gewicht: 778g
- ISBN-13: 9780521774963
- ISBN-10: 0521774969
- Artikelnr.: 21890682
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Spectral Analysis: 1. Spectral analysis of New York Stock Market
prices O. Morgenstern; 2. The typical spectral shape of an eonomic
variable; Part II. Seasonality: 3. Seasonality: causation, interpretation
and implications A. Zellner; 4. Is seasonal adjustment a linear or
nonlinear data-filtering process? E. Ghysels and P. L. Siklos; Part III.
Nonlinearity: 5. Non-linear time series modeling A. Anderson; 6. Using the
correlation exponent to decide whether an economic series is chaotic T. Liu
and W. P. Heller; 7. Testing for neglected nonlinearity in time series
models: a comparison of neural network methods and alternative tests; 8.
Modeling nonlinear relationships between extended-memory variables; 9.
Semiparametric estimates of the relation between weather and electricity
sales R. F. Engle, J. Rice and A. Weiss; Part IV. Methodology: 10. Time
series modeling and interpretation M. J. Morris; 11. On the invertibility
of time series models A. Anderson; 12. Near normality and some econometric
models; 13. The time series approach to econometric model building P.
Newbold; 14. Comments on the evaluation of policy models; 15. Implications
of aggregation with common factors; Part V. Forecasting: 16. Estimating the
probability of flooding on a tidal river; 17. Prediction with a generalized
cost of error function; 18. Some comments on the evaluation of economic
forecasts P. Newbold; 19. The combination of forecasts; 20. Invited review:
combining forecasts - twenty years later; 21. The combination of forecasts
using changing weights M. Deutsch and T. Terasvirta; 22. Forecasting
transformed series; 23. Forecasting white noise A. Zellner; 24. Can we
improve the perceived quality of economic forecasts? Short-run forecasts of
electricity loads and peaks R. Ramanathan, R. F. Engle, F. Vahid-Araghi and
C. Brace; Index.
prices O. Morgenstern; 2. The typical spectral shape of an eonomic
variable; Part II. Seasonality: 3. Seasonality: causation, interpretation
and implications A. Zellner; 4. Is seasonal adjustment a linear or
nonlinear data-filtering process? E. Ghysels and P. L. Siklos; Part III.
Nonlinearity: 5. Non-linear time series modeling A. Anderson; 6. Using the
correlation exponent to decide whether an economic series is chaotic T. Liu
and W. P. Heller; 7. Testing for neglected nonlinearity in time series
models: a comparison of neural network methods and alternative tests; 8.
Modeling nonlinear relationships between extended-memory variables; 9.
Semiparametric estimates of the relation between weather and electricity
sales R. F. Engle, J. Rice and A. Weiss; Part IV. Methodology: 10. Time
series modeling and interpretation M. J. Morris; 11. On the invertibility
of time series models A. Anderson; 12. Near normality and some econometric
models; 13. The time series approach to econometric model building P.
Newbold; 14. Comments on the evaluation of policy models; 15. Implications
of aggregation with common factors; Part V. Forecasting: 16. Estimating the
probability of flooding on a tidal river; 17. Prediction with a generalized
cost of error function; 18. Some comments on the evaluation of economic
forecasts P. Newbold; 19. The combination of forecasts; 20. Invited review:
combining forecasts - twenty years later; 21. The combination of forecasts
using changing weights M. Deutsch and T. Terasvirta; 22. Forecasting
transformed series; 23. Forecasting white noise A. Zellner; 24. Can we
improve the perceived quality of economic forecasts? Short-run forecasts of
electricity loads and peaks R. Ramanathan, R. F. Engle, F. Vahid-Araghi and
C. Brace; Index.
Part I. Spectral Analysis: 1. Spectral analysis of New York Stock Market
prices O. Morgenstern; 2. The typical spectral shape of an eonomic
variable; Part II. Seasonality: 3. Seasonality: causation, interpretation
and implications A. Zellner; 4. Is seasonal adjustment a linear or
nonlinear data-filtering process? E. Ghysels and P. L. Siklos; Part III.
Nonlinearity: 5. Non-linear time series modeling A. Anderson; 6. Using the
correlation exponent to decide whether an economic series is chaotic T. Liu
and W. P. Heller; 7. Testing for neglected nonlinearity in time series
models: a comparison of neural network methods and alternative tests; 8.
Modeling nonlinear relationships between extended-memory variables; 9.
Semiparametric estimates of the relation between weather and electricity
sales R. F. Engle, J. Rice and A. Weiss; Part IV. Methodology: 10. Time
series modeling and interpretation M. J. Morris; 11. On the invertibility
of time series models A. Anderson; 12. Near normality and some econometric
models; 13. The time series approach to econometric model building P.
Newbold; 14. Comments on the evaluation of policy models; 15. Implications
of aggregation with common factors; Part V. Forecasting: 16. Estimating the
probability of flooding on a tidal river; 17. Prediction with a generalized
cost of error function; 18. Some comments on the evaluation of economic
forecasts P. Newbold; 19. The combination of forecasts; 20. Invited review:
combining forecasts - twenty years later; 21. The combination of forecasts
using changing weights M. Deutsch and T. Terasvirta; 22. Forecasting
transformed series; 23. Forecasting white noise A. Zellner; 24. Can we
improve the perceived quality of economic forecasts? Short-run forecasts of
electricity loads and peaks R. Ramanathan, R. F. Engle, F. Vahid-Araghi and
C. Brace; Index.
prices O. Morgenstern; 2. The typical spectral shape of an eonomic
variable; Part II. Seasonality: 3. Seasonality: causation, interpretation
and implications A. Zellner; 4. Is seasonal adjustment a linear or
nonlinear data-filtering process? E. Ghysels and P. L. Siklos; Part III.
Nonlinearity: 5. Non-linear time series modeling A. Anderson; 6. Using the
correlation exponent to decide whether an economic series is chaotic T. Liu
and W. P. Heller; 7. Testing for neglected nonlinearity in time series
models: a comparison of neural network methods and alternative tests; 8.
Modeling nonlinear relationships between extended-memory variables; 9.
Semiparametric estimates of the relation between weather and electricity
sales R. F. Engle, J. Rice and A. Weiss; Part IV. Methodology: 10. Time
series modeling and interpretation M. J. Morris; 11. On the invertibility
of time series models A. Anderson; 12. Near normality and some econometric
models; 13. The time series approach to econometric model building P.
Newbold; 14. Comments on the evaluation of policy models; 15. Implications
of aggregation with common factors; Part V. Forecasting: 16. Estimating the
probability of flooding on a tidal river; 17. Prediction with a generalized
cost of error function; 18. Some comments on the evaluation of economic
forecasts P. Newbold; 19. The combination of forecasts; 20. Invited review:
combining forecasts - twenty years later; 21. The combination of forecasts
using changing weights M. Deutsch and T. Terasvirta; 22. Forecasting
transformed series; 23. Forecasting white noise A. Zellner; 24. Can we
improve the perceived quality of economic forecasts? Short-run forecasts of
electricity loads and peaks R. Ramanathan, R. F. Engle, F. Vahid-Araghi and
C. Brace; Index.