74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Broschiertes Buch

This IMA Volume in Mathematics and its Applications ESSAYS ON MATHEMATICAL ROBOTICS is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory." The workshop featured a mathematicalintroductionto kinematics and fine motion planning; dynam ics and control of kinematically redundant robot arms including snake-like robots, multi-fingered robotic hands; methods of non-holonomic motion planning for space robots, multifingered robot hands and mobile robots; new techniques in analytical mechanics for writing the dynamics of com plicated…mehr

Produktbeschreibung
This IMA Volume in Mathematics and its Applications ESSAYS ON MATHEMATICAL ROBOTICS is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory." The workshop featured a mathematicalintroductionto kinematics and fine motion planning; dynam ics and control of kinematically redundant robot arms including snake-like robots, multi-fingered robotic hands; methods of non-holonomic motion planning for space robots, multifingered robot hands and mobile robots; new techniques in analytical mechanics for writing the dynamics of com plicated multi-body systems subject to constraints on angular momentum or other non-holonomic constraints. In addition to papers representing proceedings of the Workshop, this volume contains several longer papers surveying developments of the intervening years. We thank John Baillieul, Shankar S. Sastry, and Hector J. Sussmann for organizing the workshop and editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr.
Autorenporträt
The chapters in this book present an excellent exposition of recent developments in both robotics and nonlinear control centering around "hyper-redundancy", highly oscillatory inputs, optimal control, exterior differential systems, and the use of generic loops.