A new procedure for the maximum-likelihood estimation of dynamic econometric models with errors in both endogenous and exogenous variables is presented in this monograph. A complete analytical development of the expressions used in problems of estimation and verification of models in state-space form is presented. The results are useful in relation not only to the problem of errors in variables but also to any other possible econometric application of state-space formulations.
A new procedure for the maximum-likelihood estimation of dynamic econometric models with errors in both endogenous and exogenous variables is presented in this monograph. A complete analytical development of the expressions used in problems of estimation and verification of models in state-space form is presented. The results are useful in relation not only to the problem of errors in variables but also to any other possible econometric application of state-space formulations.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Lecture Notes in Economics and Mathematical Systems 339
1. Introduction.- 2. Formulation of Econometric Models in State-Space.- 2.1. Structural Form, Reduced Form and State-Space Form.- 2.2. Additional Remarks.- 3. Formulation of Econometric Models with Measurement Errors.- 3.1. Model of the Exogenous Variables.- 3.2. State-Space Formulation.- 4. Estimation of Econometric Models with Measurement Errors.- 4.1. Evaluation of the Likelihood Function.- 4.2. Maximization of the Likelihood Function.- 4.3. Initial Conditions.- 4.4. Gradient Methods and Identification.- 4.5. Asymptotic Properties.- 4.6. Numerical Considerations.- 4.7. Model Verification.- 5. Extensions of the Analysis.- 5.1. Missing Observations and Contemporaneous Aggregation.- 5.2. Temporal Aggregation.- 5.3. Correlated Measurement Errors.- 6. Numerical Results.- 7. Conclusions.- Appendices.- A. Kalman Filter and Chandrasekhar Equations.- A.1. Kalman Filter.- A.2. Chandrasekhar Equations.- B. Calculation of the Gradient.- C. Calculation of the Hessian.- D. Calculation of the Information Matrix.- E. Estimation of the Initial Conditions.- F. Solution of the Lyapunov and Riccati Equations.- F.1. Lyapunov Equation.- F.2. Riccati Equation.- G. Fixed-Interval Smoothing Algorithm.- References.- Author Index.
1. Introduction.- 2. Formulation of Econometric Models in State-Space.- 2.1. Structural Form, Reduced Form and State-Space Form.- 2.2. Additional Remarks.- 3. Formulation of Econometric Models with Measurement Errors.- 3.1. Model of the Exogenous Variables.- 3.2. State-Space Formulation.- 4. Estimation of Econometric Models with Measurement Errors.- 4.1. Evaluation of the Likelihood Function.- 4.2. Maximization of the Likelihood Function.- 4.3. Initial Conditions.- 4.4. Gradient Methods and Identification.- 4.5. Asymptotic Properties.- 4.6. Numerical Considerations.- 4.7. Model Verification.- 5. Extensions of the Analysis.- 5.1. Missing Observations and Contemporaneous Aggregation.- 5.2. Temporal Aggregation.- 5.3. Correlated Measurement Errors.- 6. Numerical Results.- 7. Conclusions.- Appendices.- A. Kalman Filter and Chandrasekhar Equations.- A.1. Kalman Filter.- A.2. Chandrasekhar Equations.- B. Calculation of the Gradient.- C. Calculation of the Hessian.- D. Calculation of the Information Matrix.- E. Estimation of the Initial Conditions.- F. Solution of the Lyapunov and Riccati Equations.- F.1. Lyapunov Equation.- F.2. Riccati Equation.- G. Fixed-Interval Smoothing Algorithm.- References.- Author Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826