- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The fourth edition provides students with an overview of both classic and hyperbolic geometries, whilst also placing the work of key mathematicians and philosophers in a historical context. Including coverage on geometric transformations, and augmented by review notes and essay topics, this text is an excellent accompaniment to any geometry course.
Andere Kunden interessierten sich auch für
- Richard J. TrudeauThe Non-Euclidean Revolution78,99 €
- András Prékopa / Emil Molnár (eds.)Non-Euclidean Geometries125,99 €
- Jürgen WagnerEinblicke in die euklidische und nichteuklidische Geometrie34,99 €
- Ernst KunzEbene Geometrie44,99 €
- Hendrik KastenGrundlagen der ebenen Geometrie39,99 €
- James W. AndersonHyperbolic Geometry43,99 €
- Flips for 3-Folds and 4-Folds136,99 €
-
-
-
The fourth edition provides students with an overview of both classic and hyperbolic geometries, whilst also placing the work of key mathematicians and philosophers in a historical context. Including coverage on geometric transformations, and augmented by review notes and essay topics, this text is an excellent accompaniment to any geometry course.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Macmillan Education
- 4. Aufl.
- Seitenzahl: 512
- Erscheinungstermin: 1. September 2007
- Englisch, Unbestimmt
- Abmessung: 246mm x 164mm x 37mm
- Gewicht: 1082g
- ISBN-13: 9780716799481
- ISBN-10: 0716799480
- Artikelnr.: 21410642
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Macmillan Education
- 4. Aufl.
- Seitenzahl: 512
- Erscheinungstermin: 1. September 2007
- Englisch, Unbestimmt
- Abmessung: 246mm x 164mm x 37mm
- Gewicht: 1082g
- ISBN-13: 9780716799481
- ISBN-10: 0716799480
- Artikelnr.: 21410642
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
MARVIN JAY GREENBERG, University of California, Santa Cruz, USA.
Chapter 1 Euclid's Geometry.- Very Brief Survey of the Beginnings of Geometry.- The Pythagoreans.- Plato .- Euclid of Alexandria .- The Axiomatic Method .- Undefined Terms .- Euclid's First Four Postulates .- The Parallel Postulate .- Attempts to Prove the Parallel Postulate .- The Danger in Diagrams .- The Power of Diagrams .- Straightedge-and-Compass Constructions, Briefly .- Descartes' Analytic Geometry and Broader Idea of Constructions .- Briefly on the Number ð .- Conclusion Chapter 2 Logic and Incidence Geometry.- Elementary Logic .- Theorems and Proofs.- RAA Proofs .- Negation .- Quantifiers .- Implication .- Law of Excluded Middle and Proof by Cases .- Brief Historical Remarks .- Incidence Geometry .- Models .- Consistency .- Isomorphism of Models.- Projective and Affine Planes .- Brief History of Real Projective Geometry .- Conclusion Chapter 3 Hilbert's Axioms.- Flaws in Euclid .- Axioms of Betweenness .- Axioms of Congruence.- Axioms of Continuity.- Hilbert's Euclidean Axiom of Parallelism .- Conclusion Chapter 4 Neutral Geometry .- Geometry without a Parallel Axiom .- Alternate Interior Angle Theorem .- Exterior Angle Theorem .- Measure of Angles and Segments .- Equivalence of Euclidean Parallel Postulates .- Saccheri and Lambert Quadrilaterals .- Angle Sum of a Triangle .- Conclusion Chapter 5 History of the Parallel Postulate .- Review .- Proclus .- Equidistance .- Wallis .- Saccheri .- Clairaut's Axiom and Proclus' Theorem .- Legendre .- Lambert and Taurinus .- Farkas Bolyai Chapter 6 The Discovery of Non-Euclidean Geometry<.- János Bolyai .- Gauss .- Lobachevsky .- Subsequent Developments .- Non-Euclidean Hilbert Planes .- The Defect .- Similar Triangles .- Parallels Which Admit a Common Perpendicular .- Limiting Parallel Rays, Hyperbolic Planes .- Classification of Parallels .- Strange New Universe? Chapter 7 Independence of the Parallel Postulate .- Consistency of Hyperbolic Geometry .- Beltrami's Interpretation .- The Beltrami-Klein Model .- The Poincaré Models .- Perpendicularity in the Beltrami-Klein Model .- A Model of the Hyperbolic Plane from Physics .- Inversion in Circles, Poincaré Congruence .- The Projective Nature of the Beltrami-Klein Model .- Conclusion Chapter 8 Philosophical Implications, Fruitful Applications.- What Is the Geometry of Physical Space? .- What Is Mathematics About? .- The Controversy about the Foundations of Mathematics .- The Meaning .- The Fruitfulness of Hyperbolic Geometry for Other Branches of Mathematics, Cosmology, and Art Chapter 9 Geometric Transformations.- Klein's Erlanger Programme .- Groups .- Applications to Geometric Problems .- Motions and Similarities .- Reflections .- Rotations .- Translations .- Half-Turns Ideal Points in the Hyperbolic Plane .- Parallel Displacements .- Glides .- Classification of Motions .- Automorphisms of the Cartesian Model .- Motions in the Poincaré Model .- Congruence Described by Motions .- Symmetry Chapter 10 Further Results in Real Hyperbolic Geometry.- Area and Defect .- The Angle of Parallelism .- Cycles .- The Curvature of the Hyperbolic Plane .- Hyperbolic Trigonometry .- Circumference and Area of a Circle .- Saccheri and Lambert Quadrilaterals .- Coordinates in the Real Hyperbolic Plane .- The Circumscribed Cycle of a Triangle .- Bolyai's Constructions in the Hyperbolic Plane Appendix A.- Appendix B.- Axioms.- Bibliography.- Symbols.- Name Index.- Subject Index DIV>.
From the contents:
Euclid's Geometry - Logic and Incidence Geometry - Hilbert's Axioms - Neutral Geometries - History of the Parallel Postulate - The Discovery of Non-Euclidean Geometry - Independence of the Parallel Postulate - Philosophical Implications - Review Exercises - Some Topics for Essays - Index -
From the contents:
Euclid's Geometry - Logic and Incidence Geometry - Hilbert's Axioms - Neutral Geometries - History of the Parallel Postulate - The Discovery of Non-Euclidean Geometry - Independence of the Parallel Postulate - Philosophical Implications - Review Exercises - Some Topics for Essays - Index -
Chapter 1 Euclid's Geometry.- Very Brief Survey of the Beginnings of Geometry.- The Pythagoreans.- Plato .- Euclid of Alexandria .- The Axiomatic Method .- Undefined Terms .- Euclid's First Four Postulates .- The Parallel Postulate .- Attempts to Prove the Parallel Postulate .- The Danger in Diagrams .- The Power of Diagrams .- Straightedge-and-Compass Constructions, Briefly .- Descartes' Analytic Geometry and Broader Idea of Constructions .- Briefly on the Number ð .- Conclusion Chapter 2 Logic and Incidence Geometry.- Elementary Logic .- Theorems and Proofs.- RAA Proofs .- Negation .- Quantifiers .- Implication .- Law of Excluded Middle and Proof by Cases .- Brief Historical Remarks .- Incidence Geometry .- Models .- Consistency .- Isomorphism of Models.- Projective and Affine Planes .- Brief History of Real Projective Geometry .- Conclusion Chapter 3 Hilbert's Axioms.- Flaws in Euclid .- Axioms of Betweenness .- Axioms of Congruence.- Axioms of Continuity.- Hilbert's Euclidean Axiom of Parallelism .- Conclusion Chapter 4 Neutral Geometry .- Geometry without a Parallel Axiom .- Alternate Interior Angle Theorem .- Exterior Angle Theorem .- Measure of Angles and Segments .- Equivalence of Euclidean Parallel Postulates .- Saccheri and Lambert Quadrilaterals .- Angle Sum of a Triangle .- Conclusion Chapter 5 History of the Parallel Postulate .- Review .- Proclus .- Equidistance .- Wallis .- Saccheri .- Clairaut's Axiom and Proclus' Theorem .- Legendre .- Lambert and Taurinus .- Farkas Bolyai Chapter 6 The Discovery of Non-Euclidean Geometry<.- János Bolyai .- Gauss .- Lobachevsky .- Subsequent Developments .- Non-Euclidean Hilbert Planes .- The Defect .- Similar Triangles .- Parallels Which Admit a Common Perpendicular .- Limiting Parallel Rays, Hyperbolic Planes .- Classification of Parallels .- Strange New Universe? Chapter 7 Independence of the Parallel Postulate .- Consistency of Hyperbolic Geometry .- Beltrami's Interpretation .- The Beltrami-Klein Model .- The Poincaré Models .- Perpendicularity in the Beltrami-Klein Model .- A Model of the Hyperbolic Plane from Physics .- Inversion in Circles, Poincaré Congruence .- The Projective Nature of the Beltrami-Klein Model .- Conclusion Chapter 8 Philosophical Implications, Fruitful Applications.- What Is the Geometry of Physical Space? .- What Is Mathematics About? .- The Controversy about the Foundations of Mathematics .- The Meaning .- The Fruitfulness of Hyperbolic Geometry for Other Branches of Mathematics, Cosmology, and Art Chapter 9 Geometric Transformations.- Klein's Erlanger Programme .- Groups .- Applications to Geometric Problems .- Motions and Similarities .- Reflections .- Rotations .- Translations .- Half-Turns Ideal Points in the Hyperbolic Plane .- Parallel Displacements .- Glides .- Classification of Motions .- Automorphisms of the Cartesian Model .- Motions in the Poincaré Model .- Congruence Described by Motions .- Symmetry Chapter 10 Further Results in Real Hyperbolic Geometry.- Area and Defect .- The Angle of Parallelism .- Cycles .- The Curvature of the Hyperbolic Plane .- Hyperbolic Trigonometry .- Circumference and Area of a Circle .- Saccheri and Lambert Quadrilaterals .- Coordinates in the Real Hyperbolic Plane .- The Circumscribed Cycle of a Triangle .- Bolyai's Constructions in the Hyperbolic Plane Appendix A.- Appendix B.- Axioms.- Bibliography.- Symbols.- Name Index.- Subject Index DIV>.
From the contents:
Euclid's Geometry - Logic and Incidence Geometry - Hilbert's Axioms - Neutral Geometries - History of the Parallel Postulate - The Discovery of Non-Euclidean Geometry - Independence of the Parallel Postulate - Philosophical Implications - Review Exercises - Some Topics for Essays - Index -
From the contents:
Euclid's Geometry - Logic and Incidence Geometry - Hilbert's Axioms - Neutral Geometries - History of the Parallel Postulate - The Discovery of Non-Euclidean Geometry - Independence of the Parallel Postulate - Philosophical Implications - Review Exercises - Some Topics for Essays - Index -