
Evolutionary Machine Learning in Linguistic Knowledge Extraction
Versandkostenfrei!
Versandfertig in 6-10 Tagen
40,99 €
inkl. MwSt.
PAYBACK Punkte
20 °P sammeln!
This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability with...
This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.