Let G be a simply connected simple algebraic group over an algebraically closed field K of positive characteristic p, with root system R and g=L(G) be its restricted Lie algebra. Let V be a finite dimensional g-module over K. For any point v in V, the isotropy subgroup of v in G and the isotropy subalgebra of v in g are defined. A restricted g-module V is called exceptional if for each v in V, its isotropy subalgebra contains a non-central element. This book presents a classification of irreducible exceptional g-modules. A necessary condition for a g-module to be exceptional is found and a complete classification of modules over groups of simple algebraic groups of exceptional type and of classical type A is obtained. For modules over groups of classical types B, C and D, the general problem is reduced to a short list of unclassified modules. The classification of exceptional modules is expected to have applications in modular invariant theory and in the classification of modularsimple Lie superalgebras.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno