92,28 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

In the context of deep-sea oil spills, oil dispersion in turbulent multiphase jets and the buoyancy-driven ascent of gas-saturated crude oil droplets are of critical importance. Experimental investigation and modeling of these aspects are the foundation of this work. Special attention is given to the specific fluid mechanic processes during a subsea blowout and the high-pressure conditions in the deep ocean. Experiments at laboratory and pilot-plant scale as well as under atmospheric and elevated pressures give insights into the physics of oil dispersion and drop rise and lead to the…mehr

Produktbeschreibung
In the context of deep-sea oil spills, oil dispersion in turbulent multiphase jets and the buoyancy-driven ascent of gas-saturated crude oil droplets are of critical importance. Experimental investigation and modeling of these aspects are the foundation of this work. Special attention is given to the specific fluid mechanic processes during a subsea blowout and the high-pressure conditions in the deep ocean. Experiments at laboratory and pilot-plant scale as well as under atmospheric and elevated pressures give insights into the physics of oil dispersion and drop rise and lead to the development of novel model approaches. Experimental findings are discussed and integrated into four-dimensional simulations to demonstrate the effects on the oil distribution in the case of the Deepwater Horizon oil spill.