222,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
111 °P sammeln
  • Gebundenes Buch

This book introduces various widely available exploratory data analysis methods, emphasizing those that are most useful in the preliminary exploration of large datasets involving mixed data types. Topics include descriptive statistics, graphical analysis tools, regression modeling and spectrum estimation, along with practical issues like outliers, missing data, and variable selection.

Produktbeschreibung
This book introduces various widely available exploratory data analysis methods, emphasizing those that are most useful in the preliminary exploration of large datasets involving mixed data types. Topics include descriptive statistics, graphical analysis tools, regression modeling and spectrum estimation, along with practical issues like outliers, missing data, and variable selection.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Ronald Pearson has held a wide variety of technical positions in both academia and industry, including the DuPont Company, the Swiss Federal Institute of Technology (ETH, Zurich), the Tampere University of Technology in Tampere, Finland, and most recently, the Travelers Companies. Dr. Pearson's experience has included the analysis and modeling of industrial process operating data, the design of nonlinear digital filters for data cleaning applications, the analysis of historical clinical data, and he is currently involved in developing models for predictive analytics applied to large business datasets. His research interests include model structure selection for nonlinear discrete-time dynamic models of empirical data, the algebraic characterization and design of nonlinear digital filters, and the development of exploratory data analysis techniques for large datasets involving mixed data types.