26,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Thermal conductivity measurement has always been a challenging and difficult task for thermoelectric characterization of semiconductor nanowire. A process flow for poly-Si nanowire device fabrication has been reported in this thesis. The device includes the nanowires as a part of its fabrication which avoids complicated placement of nanowire on the device for experiment and also avoids the contact resistance on the both sides of nanowire. The process flow is repeatable, reliable, and able to produce functional devices. Specifically, processes were found in this research to optimize the stress…mehr

Produktbeschreibung
Thermal conductivity measurement has always been a challenging and difficult task for thermoelectric characterization of semiconductor nanowire. A process flow for poly-Si nanowire device fabrication has been reported in this thesis. The device includes the nanowires as a part of its fabrication which avoids complicated placement of nanowire on the device for experiment and also avoids the contact resistance on the both sides of nanowire. The process flow is repeatable, reliable, and able to produce functional devices. Specifically, processes were found in this research to optimize the stress of Si nitride thin films and isotropic etching of Si substrate by using particular gas mixtures. By this device, thermal conductivity of nanowires of any materials compatible to micro/nano- fabrication, can be measured rather than poly-Si nanowires only.
Autorenporträt
Nahida Akhter got her MS degree from Oklahoma State University in May'2013. Her field of interest was device fabrication and characterization. Currently she is working at Intel Corporation.