11 . 2 Study objectives 147 11 . 3 Approach to analysis 147 11. 4 Presentation and discussion of results 151 11 . 5 Conclusions 165 12 Accident management and failure analysis G. C. Meggitt 170 12. 1 Introduction 170 12. 2 Nuclear safety 170 12. 3 The accident 171 12. 4 The accident response 171 12. 5 The automatic response 171 12. 6 The tailored response 173 12. 7 The emergency plan 181 13 Decision support systems and emergency management M. Grauer 182 13. 1 Introduction 182 13. 2 The problem 183 13. 3 The multiple-criteria approach 184 3 13. 4 OveNiew of the 1-decision support software 186…mehr
11 . 2 Study objectives 147 11 . 3 Approach to analysis 147 11. 4 Presentation and discussion of results 151 11 . 5 Conclusions 165 12 Accident management and failure analysis G. C. Meggitt 170 12. 1 Introduction 170 12. 2 Nuclear safety 170 12. 3 The accident 171 12. 4 The accident response 171 12. 5 The automatic response 171 12. 6 The tailored response 173 12. 7 The emergency plan 181 13 Decision support systems and emergency management M. Grauer 182 13. 1 Introduction 182 13. 2 The problem 183 13. 3 The multiple-criteria approach 184 3 13. 4 OveNiew of the 1-decision support software 186 13. 5 A case study from chemical industry 189 13. 6 Conclusions 195 References 196 14 Safety integrity management using expert systems Dr P. Andow 198 14. 1 Introduction 198 14. 2 Safety and risk analysis 198 14. 3 The effects of applying safety and risk analysis 199 14. 4 Safety integrity management 201 14. 5 Knowledge-base contents 204 14. 6 Summary of system functions 204 14. 7 Discussion 205 References 205 15 Power system alarm analysis and fault diagnosis using expert systems P. H. Ashmole 207 15. 1 Introduction 207 15. 2 Expert systems for power system alarm analysis already developed 208 15. 3 Existing substation control arrangements 209 15. 4 Discussion of alarm data flow 210 15. 5 Expert system requirements 210 15. 6 User interface 211 15. 7 Requirements under different fault conditions 211 15.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1 Fail-safe control systems: an introduction.- References.- 2 Software fault tolerance.- 2.1 Introduction.- 2.2 What is software fault tolerance?.- 2.3 Sequential, concurrent and real-time systems.- 2.4 Analysis and synthesis tool.- 2.5 An overview of software fault tolerance techniques.- 2.6 Software fault tolerance in sequential systems.- 2.7 Software fault tolerance in concurrent systems.- 2.8 Transaction processing and distributed decisionmechanisms in distributed systems.- References.- 3 Software reliability: the way forward.- 3.1 Advantages and disadvantages of programmable systems.- 3.2 Features of software related failures.- 3.3 Reliability/integrity in design.- 3.4 The approach to safety/reliability assessment.- 3.5 Limitations and drawbacks of software assessments.- 3.6 The way forward.- References.- 4 Design principles for diagnostics decision support systems.- 4.1 Introduction.- 4.2 The operators'model.- 4.3 Diagnostic support.- 4.4 Conclusions.- 5 A fault tolerant control scheme.- 5.1 Summary.- 5.2 Introduction.- 5.3 Feedback path.- 5.4 Controller assessment.- 5.5 Decision and monitoring.- 5.6 Conclusions.- References.- 6 Fault tolerant procedures for boiler control systems design.- 6.1 Introduction.- 6.2 Motivation and design criteria.- 6.3 Scope of the problem.- 6.4 Computer architecture.- 6.5 Control loop structure.- 6.6 Scanners and data input.- 6.7 Output commands and actuator drives.- 6.8 Control algorithm.- 6.9 Operator interface.- 6.10 Software structure.- 6.11 Conclusions.- References.- 7 Framework for the design and assessment of safety related control systems.- 7.1 Introduction.- 7.2 Systems under consideration.- 7.3 Considerations underlying the guidelines.- 7.4 Safety principles.- 7.5 Design and assessment general framework.- 7.6 Applicationof the safety principles.- 7.7 Total system environment.- 7.8 Protection systems.- 7.9 Safety cases for CIMAH.- 7.10 Future development: General.- 7.11 Future development: Application-specific guidelines.- 7.12 Future development: Standards.- 7.13 Summary.- References.- 8 Failure-to-safety in turbine-generator control.- 8.1 Introduction.- 8.2 Modes of failure.- 8.3 Provisions to assure failure-to-safety.- 8.4 Fault detection requirements.- 8.5 Condition monitoring.- 8.6 Conclusion.- References.- 9 Expert systems for monitoring process control.- 9.1 Introduction.- 9.2 Benefits of the expert system.- 9.3 Process monitoring.- 9.4 Speed considerations.- 9.5 The use of history.- 9.6 Trending and forecasting.- 9.7 Supporting data acquisition.- 9.8 Meta process control.- References.- 10 Robust fault diagnosis in dynamic systems.- 10.1 Introduction.- 10.2 Problem specification.- 10.3 Robust fault detection.- 10.4 The sensor fault detection problem.- 10.5 IFD system design example.- 10.6 IFD simulation results.- 10.7 Conclusion.- References.- 11 Prediction of failure conditions.- 11.1 Introduction.- 11.2 Study objectives.- 11.3 Approach to analysis.- 11.4 Presentation and discussion of results.- 11.5 Conclusions.- 12 Accident management and failure analysis.- 12.1 Introduction.- 12.2 Nuclear safety.- 12.3 The accident.- 12.4 The accident response.- 12.5 The automatic response.- 12.6 The tailored response.- 12.7 The emergency plan.- 13 Decision support systems and emergency management.- 13.1 Introduction.- 13.2 The problem.- 13.3 The multiple-criteria approach.- 13.4 Overview of the l3-decision support software.- 13.5 A case study from chemical industry.- 13.6 Conclusions.- References.- 14 Safety integrity management using expert systems.- 14.1 Introduction.- 14.2 Safety and risk analysis.- 14.3 The effects of applying safety and risk analysis.- 14.4 Safety integrity management.- 14.5 Knowledge-base contents.- 14.6 Summary of system functions.- 14.7 Discussion.- References.- 15 Power system alarm analysis and fault diagnosis using expert Systems.- 15.1 Introduction.- 15.2 Expert systems for power system alarm analysis already developed.- 15.3 Existing substation control arrangements.- 15.4 Discussion of alarm data flow.- 15.5 Expert system requirements.- 15.6 User interface.- 15.7 Requirements under different fault conditions.- 15.8 Data structure.- 15.9 Expert system structure.- 15.10 Demonstrator phase objective.- References.- 16Intelligent process control.- 16.1 Introduction.- 16.2 Why an expert system for process control?.- 16.3 What should an expert system for process control consist of?.- 16.4 Integrating the expert system in the control system of the plant.- 16.5 Conclusions.- References.- 17 New technology for improved quality control and security of process operations.- 17.1 Introduction.- 17.2 Conventional regulation and its limitations.- 17.3 Techniques that can address product control.- 17.4 A simple comparison of conventional and predictive control.- 17.5 Discussion.- References.
1 Fail-safe control systems: an introduction.- References.- 2 Software fault tolerance.- 2.1 Introduction.- 2.2 What is software fault tolerance?.- 2.3 Sequential, concurrent and real-time systems.- 2.4 Analysis and synthesis tool.- 2.5 An overview of software fault tolerance techniques.- 2.6 Software fault tolerance in sequential systems.- 2.7 Software fault tolerance in concurrent systems.- 2.8 Transaction processing and distributed decisionmechanisms in distributed systems.- References.- 3 Software reliability: the way forward.- 3.1 Advantages and disadvantages of programmable systems.- 3.2 Features of software related failures.- 3.3 Reliability/integrity in design.- 3.4 The approach to safety/reliability assessment.- 3.5 Limitations and drawbacks of software assessments.- 3.6 The way forward.- References.- 4 Design principles for diagnostics decision support systems.- 4.1 Introduction.- 4.2 The operators'model.- 4.3 Diagnostic support.- 4.4 Conclusions.- 5 A fault tolerant control scheme.- 5.1 Summary.- 5.2 Introduction.- 5.3 Feedback path.- 5.4 Controller assessment.- 5.5 Decision and monitoring.- 5.6 Conclusions.- References.- 6 Fault tolerant procedures for boiler control systems design.- 6.1 Introduction.- 6.2 Motivation and design criteria.- 6.3 Scope of the problem.- 6.4 Computer architecture.- 6.5 Control loop structure.- 6.6 Scanners and data input.- 6.7 Output commands and actuator drives.- 6.8 Control algorithm.- 6.9 Operator interface.- 6.10 Software structure.- 6.11 Conclusions.- References.- 7 Framework for the design and assessment of safety related control systems.- 7.1 Introduction.- 7.2 Systems under consideration.- 7.3 Considerations underlying the guidelines.- 7.4 Safety principles.- 7.5 Design and assessment general framework.- 7.6 Applicationof the safety principles.- 7.7 Total system environment.- 7.8 Protection systems.- 7.9 Safety cases for CIMAH.- 7.10 Future development: General.- 7.11 Future development: Application-specific guidelines.- 7.12 Future development: Standards.- 7.13 Summary.- References.- 8 Failure-to-safety in turbine-generator control.- 8.1 Introduction.- 8.2 Modes of failure.- 8.3 Provisions to assure failure-to-safety.- 8.4 Fault detection requirements.- 8.5 Condition monitoring.- 8.6 Conclusion.- References.- 9 Expert systems for monitoring process control.- 9.1 Introduction.- 9.2 Benefits of the expert system.- 9.3 Process monitoring.- 9.4 Speed considerations.- 9.5 The use of history.- 9.6 Trending and forecasting.- 9.7 Supporting data acquisition.- 9.8 Meta process control.- References.- 10 Robust fault diagnosis in dynamic systems.- 10.1 Introduction.- 10.2 Problem specification.- 10.3 Robust fault detection.- 10.4 The sensor fault detection problem.- 10.5 IFD system design example.- 10.6 IFD simulation results.- 10.7 Conclusion.- References.- 11 Prediction of failure conditions.- 11.1 Introduction.- 11.2 Study objectives.- 11.3 Approach to analysis.- 11.4 Presentation and discussion of results.- 11.5 Conclusions.- 12 Accident management and failure analysis.- 12.1 Introduction.- 12.2 Nuclear safety.- 12.3 The accident.- 12.4 The accident response.- 12.5 The automatic response.- 12.6 The tailored response.- 12.7 The emergency plan.- 13 Decision support systems and emergency management.- 13.1 Introduction.- 13.2 The problem.- 13.3 The multiple-criteria approach.- 13.4 Overview of the l3-decision support software.- 13.5 A case study from chemical industry.- 13.6 Conclusions.- References.- 14 Safety integrity management using expert systems.- 14.1 Introduction.- 14.2 Safety and risk analysis.- 14.3 The effects of applying safety and risk analysis.- 14.4 Safety integrity management.- 14.5 Knowledge-base contents.- 14.6 Summary of system functions.- 14.7 Discussion.- References.- 15 Power system alarm analysis and fault diagnosis using expert Systems.- 15.1 Introduction.- 15.2 Expert systems for power system alarm analysis already developed.- 15.3 Existing substation control arrangements.- 15.4 Discussion of alarm data flow.- 15.5 Expert system requirements.- 15.6 User interface.- 15.7 Requirements under different fault conditions.- 15.8 Data structure.- 15.9 Expert system structure.- 15.10 Demonstrator phase objective.- References.- 16Intelligent process control.- 16.1 Introduction.- 16.2 Why an expert system for process control?.- 16.3 What should an expert system for process control consist of?.- 16.4 Integrating the expert system in the control system of the plant.- 16.5 Conclusions.- References.- 17 New technology for improved quality control and security of process operations.- 17.1 Introduction.- 17.2 Conventional regulation and its limitations.- 17.3 Techniques that can address product control.- 17.4 A simple comparison of conventional and predictive control.- 17.5 Discussion.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826