32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

The original motivation for finding expander families was to build economical robust networks for telephone and computer communication. Over the past three decades, expander families have been developed into a powerful tool with wide applications in many areas such as fast distributed routing algorithms, storage schemes, telecommunication, and cryptography. This thesis focuses on the theoretical aspects of expander families. The primary goal is to apply spectral graph theory to show the non-existence of an expander family within the class of circulant graphs. There are other proofs out there,…mehr

Produktbeschreibung
The original motivation for finding expander families was to build economical robust networks for telephone and computer communication. Over the past three decades, expander families have been developed into a powerful tool with wide applications in many areas such as fast distributed routing algorithms, storage schemes, telecommunication, and cryptography. This thesis focuses on the theoretical aspects of expander families. The primary goal is to apply spectral graph theory to show the non-existence of an expander family within the class of circulant graphs. There are other proofs out there, but this is a fundamental approach. Another part of this thesis uses the adjacency matrix and its properties to prove Cheeger's inequalities and determine when the equalities hold.
Autorenporträt
I graduated from University of California-Davis with a BS in Mathematics and obtained an MS in Mathematics at San Jose State University. I'm currently teaching at College of San Mateo and San Jose City College in California, USA.