Roger M Cooke, Daan Nieboer, Jolanta Misiewicz
Fat-Tailed Distributions
Data, Diagnostics and Dependence, Volume 1
Roger M Cooke, Daan Nieboer, Jolanta Misiewicz
Fat-Tailed Distributions
Data, Diagnostics and Dependence, Volume 1
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This title is written for the numerate nonspecialist, and hopes to serve three purposes. First it gathers mathematical material from diverse but related fields of order statistics, records, extreme value theory, majorization, regular variation and subexponentiality.
Andere Kunden interessierten sich auch für
- Marcelo G CruzFundamental Aspects of Operational Risk and Insurance Analytics and Advances in Heavy Tailed Risk Modeling: Handbooks of Operational Risk Set321,99 €
- Dorota KurowickaUncertainty Analysis with High Dimensional Dependence Modelling136,99 €
- Statistical Models and Methods for Reliability and Survival Analysis225,99 €
- Modeling and Simulation in the Medical and Health Sciences117,99 €
- Gareth W. PetersAdvances in Heavy Tailed Risk Modeling191,99 €
- Sergey FossAn Introduction to Heavy-Tailed and Subexponential Distributions44,99 €
- Benedict GrossFat Chance65,99 €
-
-
-
This title is written for the numerate nonspecialist, and hopes to serve three purposes. First it gathers mathematical material from diverse but related fields of order statistics, records, extreme value theory, majorization, regular variation and subexponentiality.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 144
- Erscheinungstermin: 1. Dezember 2014
- Englisch
- Abmessung: 236mm x 157mm x 15mm
- Gewicht: 376g
- ISBN-13: 9781848217928
- ISBN-10: 1848217927
- Artikelnr.: 41561273
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 144
- Erscheinungstermin: 1. Dezember 2014
- Englisch
- Abmessung: 236mm x 157mm x 15mm
- Gewicht: 376g
- ISBN-13: 9781848217928
- ISBN-10: 1848217927
- Artikelnr.: 41561273
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Roger M. Cooke, Chauncey Starr Chair for Risk Analysis Resources for the Future, USA and Dept. Math. TU Delft, Netherlands Daan Nieboer, Erasmus Universiteit Rotterdam, Department of Public Health (MGZ), Netherlands Jolanta Misiewicz, Professor (Full), Warsaw University of Technology, Faculty of Mathematics and Information Science, Mazowieckie, Poland
Introduction ix
Chapter 1 Fatness of Tail 1
1.1 Fat tail heuristics 1
1.2 History and data 4
1.2.1 US flood insurance claims 4
1.2.2 US crop loss 5
1.2.3 US damages and fatalities from natural disasters 5
1.2.4 US hospital discharge bills 6
1.2.5 G-Econ data 6
1.3 Diagnostics for heavy-tailed phenomena 6
1.3.1 Historical averages 7
1.3.2 Records 8
1.3.3 Mean excess 11
1.3.4 Sum convergence: self-similar or normal 12
1.3.5 Estimating the tail index 15
1.3.6 The obesity index 20
1.4 Relation to reliability theory 24
1.5. Conclusion and overview of the technical chapters 25
Chapter 2 Order Statistics 27
2.1 Distribution of order statistics 27
2.2 Conditional distribution 32
2.3 Representations for order statistics 33
2.4 Functions of order statistics 36
2.4.1 Partial sums 36
2.4.2 Ratio between order statistics 37
Chapter 3 Records 41
3.1 Standard record value processes 41
3.2 Distribution of record values 42
3.3 Record times and related statistics 44
3.4 k-records 46
Chapter 4 Regularly Varying and Subexponential Distributions 49
4.1 Classes of heavy-tailed distributions 50
4.1.1 Regularly varying distribution functions 50
4.1.2 Subexponential distribution functions 55
4.1.3 Related classes of heavy-tailed distributions 58
4.2 Mean excess function 59
4.2.1 Properties of the mean excess function 60
Chapter 5 Indices and Diagnostics of Tail Heaviness 65
5.1 Self-similarity 66
5.1.1 Distribution of the ratio between order statistics 69
5.2 The ratio as index 76
5.3 The obesity index 80
5.3.1 Theory of majorization 85
5.3.2 The obesity index of selected data sets 91
Chapter 6 Dependence 95
6.1 Definition and main properties 95
6.2 Isotropic distributions 96
6.3 Pseudo-isotropic distributions 100
6.3.1 Covariation as a measure of dependence for essentially heavy-tail
jointly pseudo-isotropic variables 104
6.3.2 Codifference 109
6.3.3 The linear regression model for essentially heavy-tail distribution
110
Conclusions and Perspectives 115
Bibliography 119
Index 123
Chapter 1 Fatness of Tail 1
1.1 Fat tail heuristics 1
1.2 History and data 4
1.2.1 US flood insurance claims 4
1.2.2 US crop loss 5
1.2.3 US damages and fatalities from natural disasters 5
1.2.4 US hospital discharge bills 6
1.2.5 G-Econ data 6
1.3 Diagnostics for heavy-tailed phenomena 6
1.3.1 Historical averages 7
1.3.2 Records 8
1.3.3 Mean excess 11
1.3.4 Sum convergence: self-similar or normal 12
1.3.5 Estimating the tail index 15
1.3.6 The obesity index 20
1.4 Relation to reliability theory 24
1.5. Conclusion and overview of the technical chapters 25
Chapter 2 Order Statistics 27
2.1 Distribution of order statistics 27
2.2 Conditional distribution 32
2.3 Representations for order statistics 33
2.4 Functions of order statistics 36
2.4.1 Partial sums 36
2.4.2 Ratio between order statistics 37
Chapter 3 Records 41
3.1 Standard record value processes 41
3.2 Distribution of record values 42
3.3 Record times and related statistics 44
3.4 k-records 46
Chapter 4 Regularly Varying and Subexponential Distributions 49
4.1 Classes of heavy-tailed distributions 50
4.1.1 Regularly varying distribution functions 50
4.1.2 Subexponential distribution functions 55
4.1.3 Related classes of heavy-tailed distributions 58
4.2 Mean excess function 59
4.2.1 Properties of the mean excess function 60
Chapter 5 Indices and Diagnostics of Tail Heaviness 65
5.1 Self-similarity 66
5.1.1 Distribution of the ratio between order statistics 69
5.2 The ratio as index 76
5.3 The obesity index 80
5.3.1 Theory of majorization 85
5.3.2 The obesity index of selected data sets 91
Chapter 6 Dependence 95
6.1 Definition and main properties 95
6.2 Isotropic distributions 96
6.3 Pseudo-isotropic distributions 100
6.3.1 Covariation as a measure of dependence for essentially heavy-tail
jointly pseudo-isotropic variables 104
6.3.2 Codifference 109
6.3.3 The linear regression model for essentially heavy-tail distribution
110
Conclusions and Perspectives 115
Bibliography 119
Index 123
Introduction ix
Chapter 1 Fatness of Tail 1
1.1 Fat tail heuristics 1
1.2 History and data 4
1.2.1 US flood insurance claims 4
1.2.2 US crop loss 5
1.2.3 US damages and fatalities from natural disasters 5
1.2.4 US hospital discharge bills 6
1.2.5 G-Econ data 6
1.3 Diagnostics for heavy-tailed phenomena 6
1.3.1 Historical averages 7
1.3.2 Records 8
1.3.3 Mean excess 11
1.3.4 Sum convergence: self-similar or normal 12
1.3.5 Estimating the tail index 15
1.3.6 The obesity index 20
1.4 Relation to reliability theory 24
1.5. Conclusion and overview of the technical chapters 25
Chapter 2 Order Statistics 27
2.1 Distribution of order statistics 27
2.2 Conditional distribution 32
2.3 Representations for order statistics 33
2.4 Functions of order statistics 36
2.4.1 Partial sums 36
2.4.2 Ratio between order statistics 37
Chapter 3 Records 41
3.1 Standard record value processes 41
3.2 Distribution of record values 42
3.3 Record times and related statistics 44
3.4 k-records 46
Chapter 4 Regularly Varying and Subexponential Distributions 49
4.1 Classes of heavy-tailed distributions 50
4.1.1 Regularly varying distribution functions 50
4.1.2 Subexponential distribution functions 55
4.1.3 Related classes of heavy-tailed distributions 58
4.2 Mean excess function 59
4.2.1 Properties of the mean excess function 60
Chapter 5 Indices and Diagnostics of Tail Heaviness 65
5.1 Self-similarity 66
5.1.1 Distribution of the ratio between order statistics 69
5.2 The ratio as index 76
5.3 The obesity index 80
5.3.1 Theory of majorization 85
5.3.2 The obesity index of selected data sets 91
Chapter 6 Dependence 95
6.1 Definition and main properties 95
6.2 Isotropic distributions 96
6.3 Pseudo-isotropic distributions 100
6.3.1 Covariation as a measure of dependence for essentially heavy-tail
jointly pseudo-isotropic variables 104
6.3.2 Codifference 109
6.3.3 The linear regression model for essentially heavy-tail distribution
110
Conclusions and Perspectives 115
Bibliography 119
Index 123
Chapter 1 Fatness of Tail 1
1.1 Fat tail heuristics 1
1.2 History and data 4
1.2.1 US flood insurance claims 4
1.2.2 US crop loss 5
1.2.3 US damages and fatalities from natural disasters 5
1.2.4 US hospital discharge bills 6
1.2.5 G-Econ data 6
1.3 Diagnostics for heavy-tailed phenomena 6
1.3.1 Historical averages 7
1.3.2 Records 8
1.3.3 Mean excess 11
1.3.4 Sum convergence: self-similar or normal 12
1.3.5 Estimating the tail index 15
1.3.6 The obesity index 20
1.4 Relation to reliability theory 24
1.5. Conclusion and overview of the technical chapters 25
Chapter 2 Order Statistics 27
2.1 Distribution of order statistics 27
2.2 Conditional distribution 32
2.3 Representations for order statistics 33
2.4 Functions of order statistics 36
2.4.1 Partial sums 36
2.4.2 Ratio between order statistics 37
Chapter 3 Records 41
3.1 Standard record value processes 41
3.2 Distribution of record values 42
3.3 Record times and related statistics 44
3.4 k-records 46
Chapter 4 Regularly Varying and Subexponential Distributions 49
4.1 Classes of heavy-tailed distributions 50
4.1.1 Regularly varying distribution functions 50
4.1.2 Subexponential distribution functions 55
4.1.3 Related classes of heavy-tailed distributions 58
4.2 Mean excess function 59
4.2.1 Properties of the mean excess function 60
Chapter 5 Indices and Diagnostics of Tail Heaviness 65
5.1 Self-similarity 66
5.1.1 Distribution of the ratio between order statistics 69
5.2 The ratio as index 76
5.3 The obesity index 80
5.3.1 Theory of majorization 85
5.3.2 The obesity index of selected data sets 91
Chapter 6 Dependence 95
6.1 Definition and main properties 95
6.2 Isotropic distributions 96
6.3 Pseudo-isotropic distributions 100
6.3.1 Covariation as a measure of dependence for essentially heavy-tail
jointly pseudo-isotropic variables 104
6.3.2 Codifference 109
6.3.3 The linear regression model for essentially heavy-tail distribution
110
Conclusions and Perspectives 115
Bibliography 119
Index 123