Swagata Das, Surya Santoso, Sundaravaradan N. Ananthan
Fault Location on Transmission and Distribution Lines
Principles and Applications
Swagata Das, Surya Santoso, Sundaravaradan N. Ananthan
Fault Location on Transmission and Distribution Lines
Principles and Applications
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides readers with up-to-date coverage of fault location algorithms in transmission and distribution networks. The algorithms will help readers track down the exact location of a fault in the shortest possible time. Furthermore, voltage and current waveforms recorded by digital relays, digital fault recorders, and other intelligent electronic devices contain a wealth of information. Knowledge gained from analysing the fault data can help system operators understand what happened, why it happened and how it can be prevented from happening again. The book will help readers convert…mehr
Andere Kunden interessierten sich auch für
- Ryan Kuo-Lung LianHarmonic Modeling of Voltage Source Converters Using Basic Numerical Methods167,99 €
- Wireless Blockchain149,99 €
- Marian K. KazimierczukAverage Current-Mode Control of DC-DC Power Converters156,99 €
- Haesik KimDesign and Optimization for 5g Wireless Communications154,99 €
- Hirley AlvesWireless RF Energy Transfer in the Massive Iot Era156,99 €
- Jun JiangOptical Sensing in Power Transformers154,99 €
- Kamran SharifabadiDesign, Control, and Application of Modular Multilevel Converters for Hvdc Transmission Systems163,99 €
-
-
-
This book provides readers with up-to-date coverage of fault location algorithms in transmission and distribution networks. The algorithms will help readers track down the exact location of a fault in the shortest possible time. Furthermore, voltage and current waveforms recorded by digital relays, digital fault recorders, and other intelligent electronic devices contain a wealth of information. Knowledge gained from analysing the fault data can help system operators understand what happened, why it happened and how it can be prevented from happening again. The book will help readers convert such raw data into useful information and improve power system performance and reliability.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Wiley - IEEE
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119121460
- 1. Auflage
- Seitenzahl: 288
- Erscheinungstermin: 22. November 2021
- Englisch
- Abmessung: 244mm x 170mm x 18mm
- Gewicht: 648g
- ISBN-13: 9781119121466
- ISBN-10: 1119121469
- Artikelnr.: 62124719
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Wiley - IEEE
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119121460
- 1. Auflage
- Seitenzahl: 288
- Erscheinungstermin: 22. November 2021
- Englisch
- Abmessung: 244mm x 170mm x 18mm
- Gewicht: 648g
- ISBN-13: 9781119121466
- ISBN-10: 1119121469
- Artikelnr.: 62124719
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Swagata Das, PhD, is an Application Engineer (Protection) at Schweitzer Engineering Laboratories, Texas, USA. She is an IEEE Senior Member and has published in peer-reviewed journals and presented her research on fault location and fault data analysis in transmission and distribution networks to industry professionals at several IEEE Power and Energy Society conferences. Surya Santoso, PhD, is a Professor in Electrical Engineering at The University of Texas at Austin, USA. His research interests include power systems fault analytics and protection, power systems modeling and simulation, and power quality. He is an IEEE Fellow and a Distinguished Lecturer for the IEEE Power and Energy Society. Sundaravaradan N. Ananthan, PhD, is a Project Engineer (Protection) at Schweitzer Engineering Laboratories, Texas, USA. He has a background in power system protection and fault location in transmission and distribution networks and has published his research in many international journals and conferences.
1 Introduction 11.1 Power System Faults 11.2 What Causes Shunt Faults? 41.3 Aim and Importance of Fault Location 181.4 Types of Fault-Locating Algorithms 211.5 How are Fault-Locating Algorithms Implemented? 251.6 Evaluation of Fault-Locating Algorithms 291.7 The Best Fault-Locating Algorithm 301.8 Summary 302 Symmetrical Components 332.1 Phasors 342.2 Theory of Symmetrical Components 352.3 Interconnecting Sequence Networks 372.4 Sequence Impedances of Three-Phase Lines 442.5 Exercise Problems 502.6 Summary 553 Fault Location on Transmission Lines 573.1 One-Ended Impedance-Based Fault Location Algorithms 573.1.1 Simple Reactance Method 603.1.2 Takagi Method 623.1.3 Modified Takagi Method 633.1.4 Current Distribution Factor Method 663.2 Two-Ended Impedance-Based Fault Location Algorithms 683.2.1 Synchronized Method 683.2.2 Unsynchronized Method 693.2.3 Unsynchronized Current-Only Method 703.2.4 Synchronized Line Current Differential Method 713.3 Three-Ended Impedance-Based Fault Location Algorithms 723.3.1 Synchronized Method 733.3.2 Unsynchronized Method 753.3.3 Unsynchronized Current-Only Method 763.3.4 Synchronized Line Current Differential Method 773.4 Traveling Wave Fault Location Algorithms 783.4.1 Single-Ended Traveling Wave Method 813.4.2 Double-Ended Traveling Wave Method 813.4.3 Error Sources 823.5 Exercise Problems 893.6 Summary 1094 Error Sources in Impedance-Based Fault Location 1114.1 Power System Model 1114.2 Input Data Errors 1134.2.1 DC Offset 1134.2.2 CT Saturation 1154.2.3 Aging CCVTs 1184.2.4 Open-Delta VTs 1184.2.5 Inaccurate Line Length 1224.2.6 Untransposed Lines 1224.2.7 Variation in Earth Resistivity 1244.2.8 Non-Homogeneous Lines 1274.2.9 Incorrect Fault Type Selection 1284.3 Application Errors 1284.3.1 Load 1284.3.2 Non-Homogeneous System 1304.3.3 Zero-Sequence Mutual Coupling 1344.3.4 Series Compensation 1404.3.5 Three-Terminal Lines 1414.3.6 Radial Tap 1424.3.7 Evolving Faults 1434.4 Exercise Problems 1444.5 Summary 1505 Fault Location on Overhead Distribution Feeders 1535.1 Impedance-Based Methods 1605.1.1 Loop Reactance Method 1615.1.2 Simple Reactance Method 1675.1.3 Takagi Method 1685.1.4 Modified Takagi Method 1685.1.5 Girgis et al. Method 1685.1.6 Santoso et al. Method 1705.1.7 Novosel et al. Method 1725.2 Challenges with Distribution Fault Location 1735.2.1 Load 1735.2.2 Non-Homogeneous Lines 1745.2.3 Inaccurate Earth Resistivity 1785.2.4 Multiple Laterals 1785.2.5 Best Data for Fault Location: Feeder or Substation Relays 1805.2.6 Distributed Generation 1805.2.7 High Impedance Faults 1845.2.8 CT Saturation 1845.2.9 Grounding 1855.2.10 Short Duration Faults 1865.2.11 Missing Voltage 1865.3 Exercise Problems 1875.4 Summary 2106 Distribution Fault Location With Current Only 2116.1 Current Phasors Only Method 2116.2 Current Magnitude Only Method 2166.3 Short-circuit Fault Current Profile Method 2246.4 Exercise Problems 2266.5 Summary 2467 System and Operational Benefits of Fault Location 2477.1 Verify
Preface ix
About the Companion Website xi
1 Introduction 1
1.1 Power System Faults 1
1.2 What Causes Shunt Faults? 4
1.3 Aim and Importance of Fault Location 16
1.4 Types of Fault-Locating Algorithms 19
1.5 How are Fault-Locating Algorithms Implemented? 21
1.6 Evaluation of Fault-Locating Algorithms 25
1.7 The Best Fault-Locating Algorithm 26
1.8 Summary 26
2 Symmetrical Components 27
2.1 Phasors 28
2.2 Theory of Symmetrical Components 29
2.3 Interconnecting Sequence Networks 31
2.4 Sequence Impedances of Three-Phase Lines 36
2.5 Exercise Problems 41
2.6 Summary 46
3 Fault Location on Transmission Lines 49
3.1 One-Ended Impedance-Based Fault Location Algorithms 49
3.1.1 Simple Reactance Method 52
3.1.2 Takagi Method 54
3.1.3 Modified Takagi Method 56
3.1.4 Current Distribution Factor Method 57
3.2 Two-Ended Impedance-Based Fault Location Algorithms 58
3.2.1 Synchronized Method 59
3.2.2 Unsynchronized Method 60
3.2.3 Unsynchronized Negative-Sequence Method 61
3.2.4 Synchronized Line Current Differential Method 62
3.3 Three-Ended Impedance-Based Fault Location Algorithms 62
3.3.1 Synchronized Method 63
3.3.2 Unsynchronized Method 65
3.3.3 Unsynchronized Negative-Sequence Method 66
3.3.4 Synchronized Line Current Differential Method 67
3.4 Traveling-Wave Fault Location Algorithms 68
3.4.1 Single-Ended TravelingWave Method 69
3.4.2 Double-Ended Traveling-Wave Method 71
3.4.3 Error Sources 71
3.5 Exercise Problems 77
3.6 Summary 93
4 Error Sources in Impedance-Based Fault Location 95
4.1 Power System Model 95
4.2 Input Data Errors 96
4.2.1 DC Offset 97
4.2.2 CT Saturation 99
4.2.3 Aging CCVTs 101
4.2.4 Open-Delta VTs 101
4.2.5 Inaccurate Line Length 104
4.2.6 Untransposed Lines 104
4.2.7 Variation in Earth Resistivity 106
4.2.8 Non-Homogeneous Lines 107
4.2.9 Incorrect Fault Type Selection 109
4.3 Application Errors 109
4.3.1 Load 109
4.3.2 Non-Homogeneous System 111
4.3.3 Zero-Sequence Mutual Coupling 111
4.3.4 Series Compensation 118
4.3.5 Three-Terminal Lines 119
4.3.6 Radial Tap 120
4.3.7 Evolving Faults 121
4.4 Exercise Problems 122
4.5 Summary 126
5 Fault Location on Overhead Distribution Feeders 129
5.1 Impedance-Based Methods 134
5.1.1 Loop Reactance Method 135
5.1.2 Simple Reactance Method 140
5.1.3 Takagi Method 140
5.1.4 Modified Takagi Method 141
5.1.5 Girgis et al. Method 141
5.1.6 Santoso et al. Method 143
5.1.7 Novosel et al. Method 144
5.2 Challenges with Distribution Fault Location 146
5.2.1 Load 146
5.2.2 Non-Homogeneous Lines 146
5.2.3 Inaccurate Earth Resistivity 149
5.2.4 Multiple Laterals 150
5.2.5 Best Data for Fault Location: Feeder or Substation Relays 151
5.2.6 Distributed Generation 152
5.2.7 High Impedance Faults 156
5.2.8 CT Saturation 156
5.2.9 Grounding 156
5.2.10 Short Duration Faults 157
5.2.11 Missing Voltage 157
5.3 Exercise Problems 158
5.4 Summary 177
6 Distribution Fault Location With Current Only 179
About the Companion Website xi
1 Introduction 1
1.1 Power System Faults 1
1.2 What Causes Shunt Faults? 4
1.3 Aim and Importance of Fault Location 16
1.4 Types of Fault-Locating Algorithms 19
1.5 How are Fault-Locating Algorithms Implemented? 21
1.6 Evaluation of Fault-Locating Algorithms 25
1.7 The Best Fault-Locating Algorithm 26
1.8 Summary 26
2 Symmetrical Components 27
2.1 Phasors 28
2.2 Theory of Symmetrical Components 29
2.3 Interconnecting Sequence Networks 31
2.4 Sequence Impedances of Three-Phase Lines 36
2.5 Exercise Problems 41
2.6 Summary 46
3 Fault Location on Transmission Lines 49
3.1 One-Ended Impedance-Based Fault Location Algorithms 49
3.1.1 Simple Reactance Method 52
3.1.2 Takagi Method 54
3.1.3 Modified Takagi Method 56
3.1.4 Current Distribution Factor Method 57
3.2 Two-Ended Impedance-Based Fault Location Algorithms 58
3.2.1 Synchronized Method 59
3.2.2 Unsynchronized Method 60
3.2.3 Unsynchronized Negative-Sequence Method 61
3.2.4 Synchronized Line Current Differential Method 62
3.3 Three-Ended Impedance-Based Fault Location Algorithms 62
3.3.1 Synchronized Method 63
3.3.2 Unsynchronized Method 65
3.3.3 Unsynchronized Negative-Sequence Method 66
3.3.4 Synchronized Line Current Differential Method 67
3.4 Traveling-Wave Fault Location Algorithms 68
3.4.1 Single-Ended TravelingWave Method 69
3.4.2 Double-Ended Traveling-Wave Method 71
3.4.3 Error Sources 71
3.5 Exercise Problems 77
3.6 Summary 93
4 Error Sources in Impedance-Based Fault Location 95
4.1 Power System Model 95
4.2 Input Data Errors 96
4.2.1 DC Offset 97
4.2.2 CT Saturation 99
4.2.3 Aging CCVTs 101
4.2.4 Open-Delta VTs 101
4.2.5 Inaccurate Line Length 104
4.2.6 Untransposed Lines 104
4.2.7 Variation in Earth Resistivity 106
4.2.8 Non-Homogeneous Lines 107
4.2.9 Incorrect Fault Type Selection 109
4.3 Application Errors 109
4.3.1 Load 109
4.3.2 Non-Homogeneous System 111
4.3.3 Zero-Sequence Mutual Coupling 111
4.3.4 Series Compensation 118
4.3.5 Three-Terminal Lines 119
4.3.6 Radial Tap 120
4.3.7 Evolving Faults 121
4.4 Exercise Problems 122
4.5 Summary 126
5 Fault Location on Overhead Distribution Feeders 129
5.1 Impedance-Based Methods 134
5.1.1 Loop Reactance Method 135
5.1.2 Simple Reactance Method 140
5.1.3 Takagi Method 140
5.1.4 Modified Takagi Method 141
5.1.5 Girgis et al. Method 141
5.1.6 Santoso et al. Method 143
5.1.7 Novosel et al. Method 144
5.2 Challenges with Distribution Fault Location 146
5.2.1 Load 146
5.2.2 Non-Homogeneous Lines 146
5.2.3 Inaccurate Earth Resistivity 149
5.2.4 Multiple Laterals 150
5.2.5 Best Data for Fault Location: Feeder or Substation Relays 151
5.2.6 Distributed Generation 152
5.2.7 High Impedance Faults 156
5.2.8 CT Saturation 156
5.2.9 Grounding 156
5.2.10 Short Duration Faults 157
5.2.11 Missing Voltage 157
5.3 Exercise Problems 158
5.4 Summary 177
6 Distribution Fault Location With Current Only 179
1 Introduction 11.1 Power System Faults 11.2 What Causes Shunt Faults? 41.3 Aim and Importance of Fault Location 181.4 Types of Fault-Locating Algorithms 211.5 How are Fault-Locating Algorithms Implemented? 251.6 Evaluation of Fault-Locating Algorithms 291.7 The Best Fault-Locating Algorithm 301.8 Summary 302 Symmetrical Components 332.1 Phasors 342.2 Theory of Symmetrical Components 352.3 Interconnecting Sequence Networks 372.4 Sequence Impedances of Three-Phase Lines 442.5 Exercise Problems 502.6 Summary 553 Fault Location on Transmission Lines 573.1 One-Ended Impedance-Based Fault Location Algorithms 573.1.1 Simple Reactance Method 603.1.2 Takagi Method 623.1.3 Modified Takagi Method 633.1.4 Current Distribution Factor Method 663.2 Two-Ended Impedance-Based Fault Location Algorithms 683.2.1 Synchronized Method 683.2.2 Unsynchronized Method 693.2.3 Unsynchronized Current-Only Method 703.2.4 Synchronized Line Current Differential Method 713.3 Three-Ended Impedance-Based Fault Location Algorithms 723.3.1 Synchronized Method 733.3.2 Unsynchronized Method 753.3.3 Unsynchronized Current-Only Method 763.3.4 Synchronized Line Current Differential Method 773.4 Traveling Wave Fault Location Algorithms 783.4.1 Single-Ended Traveling Wave Method 813.4.2 Double-Ended Traveling Wave Method 813.4.3 Error Sources 823.5 Exercise Problems 893.6 Summary 1094 Error Sources in Impedance-Based Fault Location 1114.1 Power System Model 1114.2 Input Data Errors 1134.2.1 DC Offset 1134.2.2 CT Saturation 1154.2.3 Aging CCVTs 1184.2.4 Open-Delta VTs 1184.2.5 Inaccurate Line Length 1224.2.6 Untransposed Lines 1224.2.7 Variation in Earth Resistivity 1244.2.8 Non-Homogeneous Lines 1274.2.9 Incorrect Fault Type Selection 1284.3 Application Errors 1284.3.1 Load 1284.3.2 Non-Homogeneous System 1304.3.3 Zero-Sequence Mutual Coupling 1344.3.4 Series Compensation 1404.3.5 Three-Terminal Lines 1414.3.6 Radial Tap 1424.3.7 Evolving Faults 1434.4 Exercise Problems 1444.5 Summary 1505 Fault Location on Overhead Distribution Feeders 1535.1 Impedance-Based Methods 1605.1.1 Loop Reactance Method 1615.1.2 Simple Reactance Method 1675.1.3 Takagi Method 1685.1.4 Modified Takagi Method 1685.1.5 Girgis et al. Method 1685.1.6 Santoso et al. Method 1705.1.7 Novosel et al. Method 1725.2 Challenges with Distribution Fault Location 1735.2.1 Load 1735.2.2 Non-Homogeneous Lines 1745.2.3 Inaccurate Earth Resistivity 1785.2.4 Multiple Laterals 1785.2.5 Best Data for Fault Location: Feeder or Substation Relays 1805.2.6 Distributed Generation 1805.2.7 High Impedance Faults 1845.2.8 CT Saturation 1845.2.9 Grounding 1855.2.10 Short Duration Faults 1865.2.11 Missing Voltage 1865.3 Exercise Problems 1875.4 Summary 2106 Distribution Fault Location With Current Only 2116.1 Current Phasors Only Method 2116.2 Current Magnitude Only Method 2166.3 Short-circuit Fault Current Profile Method 2246.4 Exercise Problems 2266.5 Summary 2467 System and Operational Benefits of Fault Location 2477.1 Verify
Preface ix
About the Companion Website xi
1 Introduction 1
1.1 Power System Faults 1
1.2 What Causes Shunt Faults? 4
1.3 Aim and Importance of Fault Location 16
1.4 Types of Fault-Locating Algorithms 19
1.5 How are Fault-Locating Algorithms Implemented? 21
1.6 Evaluation of Fault-Locating Algorithms 25
1.7 The Best Fault-Locating Algorithm 26
1.8 Summary 26
2 Symmetrical Components 27
2.1 Phasors 28
2.2 Theory of Symmetrical Components 29
2.3 Interconnecting Sequence Networks 31
2.4 Sequence Impedances of Three-Phase Lines 36
2.5 Exercise Problems 41
2.6 Summary 46
3 Fault Location on Transmission Lines 49
3.1 One-Ended Impedance-Based Fault Location Algorithms 49
3.1.1 Simple Reactance Method 52
3.1.2 Takagi Method 54
3.1.3 Modified Takagi Method 56
3.1.4 Current Distribution Factor Method 57
3.2 Two-Ended Impedance-Based Fault Location Algorithms 58
3.2.1 Synchronized Method 59
3.2.2 Unsynchronized Method 60
3.2.3 Unsynchronized Negative-Sequence Method 61
3.2.4 Synchronized Line Current Differential Method 62
3.3 Three-Ended Impedance-Based Fault Location Algorithms 62
3.3.1 Synchronized Method 63
3.3.2 Unsynchronized Method 65
3.3.3 Unsynchronized Negative-Sequence Method 66
3.3.4 Synchronized Line Current Differential Method 67
3.4 Traveling-Wave Fault Location Algorithms 68
3.4.1 Single-Ended TravelingWave Method 69
3.4.2 Double-Ended Traveling-Wave Method 71
3.4.3 Error Sources 71
3.5 Exercise Problems 77
3.6 Summary 93
4 Error Sources in Impedance-Based Fault Location 95
4.1 Power System Model 95
4.2 Input Data Errors 96
4.2.1 DC Offset 97
4.2.2 CT Saturation 99
4.2.3 Aging CCVTs 101
4.2.4 Open-Delta VTs 101
4.2.5 Inaccurate Line Length 104
4.2.6 Untransposed Lines 104
4.2.7 Variation in Earth Resistivity 106
4.2.8 Non-Homogeneous Lines 107
4.2.9 Incorrect Fault Type Selection 109
4.3 Application Errors 109
4.3.1 Load 109
4.3.2 Non-Homogeneous System 111
4.3.3 Zero-Sequence Mutual Coupling 111
4.3.4 Series Compensation 118
4.3.5 Three-Terminal Lines 119
4.3.6 Radial Tap 120
4.3.7 Evolving Faults 121
4.4 Exercise Problems 122
4.5 Summary 126
5 Fault Location on Overhead Distribution Feeders 129
5.1 Impedance-Based Methods 134
5.1.1 Loop Reactance Method 135
5.1.2 Simple Reactance Method 140
5.1.3 Takagi Method 140
5.1.4 Modified Takagi Method 141
5.1.5 Girgis et al. Method 141
5.1.6 Santoso et al. Method 143
5.1.7 Novosel et al. Method 144
5.2 Challenges with Distribution Fault Location 146
5.2.1 Load 146
5.2.2 Non-Homogeneous Lines 146
5.2.3 Inaccurate Earth Resistivity 149
5.2.4 Multiple Laterals 150
5.2.5 Best Data for Fault Location: Feeder or Substation Relays 151
5.2.6 Distributed Generation 152
5.2.7 High Impedance Faults 156
5.2.8 CT Saturation 156
5.2.9 Grounding 156
5.2.10 Short Duration Faults 157
5.2.11 Missing Voltage 157
5.3 Exercise Problems 158
5.4 Summary 177
6 Distribution Fault Location With Current Only 179
About the Companion Website xi
1 Introduction 1
1.1 Power System Faults 1
1.2 What Causes Shunt Faults? 4
1.3 Aim and Importance of Fault Location 16
1.4 Types of Fault-Locating Algorithms 19
1.5 How are Fault-Locating Algorithms Implemented? 21
1.6 Evaluation of Fault-Locating Algorithms 25
1.7 The Best Fault-Locating Algorithm 26
1.8 Summary 26
2 Symmetrical Components 27
2.1 Phasors 28
2.2 Theory of Symmetrical Components 29
2.3 Interconnecting Sequence Networks 31
2.4 Sequence Impedances of Three-Phase Lines 36
2.5 Exercise Problems 41
2.6 Summary 46
3 Fault Location on Transmission Lines 49
3.1 One-Ended Impedance-Based Fault Location Algorithms 49
3.1.1 Simple Reactance Method 52
3.1.2 Takagi Method 54
3.1.3 Modified Takagi Method 56
3.1.4 Current Distribution Factor Method 57
3.2 Two-Ended Impedance-Based Fault Location Algorithms 58
3.2.1 Synchronized Method 59
3.2.2 Unsynchronized Method 60
3.2.3 Unsynchronized Negative-Sequence Method 61
3.2.4 Synchronized Line Current Differential Method 62
3.3 Three-Ended Impedance-Based Fault Location Algorithms 62
3.3.1 Synchronized Method 63
3.3.2 Unsynchronized Method 65
3.3.3 Unsynchronized Negative-Sequence Method 66
3.3.4 Synchronized Line Current Differential Method 67
3.4 Traveling-Wave Fault Location Algorithms 68
3.4.1 Single-Ended TravelingWave Method 69
3.4.2 Double-Ended Traveling-Wave Method 71
3.4.3 Error Sources 71
3.5 Exercise Problems 77
3.6 Summary 93
4 Error Sources in Impedance-Based Fault Location 95
4.1 Power System Model 95
4.2 Input Data Errors 96
4.2.1 DC Offset 97
4.2.2 CT Saturation 99
4.2.3 Aging CCVTs 101
4.2.4 Open-Delta VTs 101
4.2.5 Inaccurate Line Length 104
4.2.6 Untransposed Lines 104
4.2.7 Variation in Earth Resistivity 106
4.2.8 Non-Homogeneous Lines 107
4.2.9 Incorrect Fault Type Selection 109
4.3 Application Errors 109
4.3.1 Load 109
4.3.2 Non-Homogeneous System 111
4.3.3 Zero-Sequence Mutual Coupling 111
4.3.4 Series Compensation 118
4.3.5 Three-Terminal Lines 119
4.3.6 Radial Tap 120
4.3.7 Evolving Faults 121
4.4 Exercise Problems 122
4.5 Summary 126
5 Fault Location on Overhead Distribution Feeders 129
5.1 Impedance-Based Methods 134
5.1.1 Loop Reactance Method 135
5.1.2 Simple Reactance Method 140
5.1.3 Takagi Method 140
5.1.4 Modified Takagi Method 141
5.1.5 Girgis et al. Method 141
5.1.6 Santoso et al. Method 143
5.1.7 Novosel et al. Method 144
5.2 Challenges with Distribution Fault Location 146
5.2.1 Load 146
5.2.2 Non-Homogeneous Lines 146
5.2.3 Inaccurate Earth Resistivity 149
5.2.4 Multiple Laterals 150
5.2.5 Best Data for Fault Location: Feeder or Substation Relays 151
5.2.6 Distributed Generation 152
5.2.7 High Impedance Faults 156
5.2.8 CT Saturation 156
5.2.9 Grounding 156
5.2.10 Short Duration Faults 157
5.2.11 Missing Voltage 157
5.3 Exercise Problems 158
5.4 Summary 177
6 Distribution Fault Location With Current Only 179