Uravneniya Maxvella v dijelektricheskoj srede ne invariantny otnositel'no preobrazovaniya Lorenca so skorost'ju sveta v vakuume. Zapisyvaya svyaz' mezhdu napryazhennost'ju i indukciej v dvizhushhemsya dijelektrike i vakuume, v dvizhushhejsya srede i vakuume, v invariantnom otnositel'no preobrazovaniya Lorenca vide, to v vakuume napryazhennost' polya budet imet' dva raznyh znacheniya. Pri jetom neobhodimo otlichat' fazovuju skorost' sredy i fazovuju skorost' tela. Esli fazovaya skorost' sredy ne zavisit ot skorosti sistemy koordinat i odinakova v raznyh sistemah koordinat, to fazovaya skorost' tela zavisit ot ego skorosti. Poluchena interpolyacionnaya formula, opisyvajushhaya fazovuju skorost' sredy i tela, i v promezhutochnom sluchae. Fazovaya skorost' tela opredelyaetsya s pomoshh'ju uravneniya jejkonala, kak v dvizhushhihsya sredah, tak i v anizotropnyh, prichem v kazhdom dvizhushhemsya tele imeetsya svoya fazovaya skorost'. Schitaetsya, chto uravnenie Diraka s potencialom spravedlivo tol'ko dlya chastic so spinom . Pri drugih spinah obrazuetsya sverhsvetovaya skorost'. Esli ispol'zovat' predlagaemoe preobrazovanie Lorenca, to predel'naya skorost' dvizheniya povysitsya i vozmozhno opisanie dvizheniya chastic s drugim spinom s uchetom potenciala.