29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

To explore and utilize huge amount of text documents is a major question in the area of information retrieval and text mining. All the methods aiming to find groups of entities utilizes similarity or dissimilarity measure. It is necessary to analyse how similarity measure behave on text documents before developing or modifying a good similarity measure for document clustering to understand the effectiveness of the technique. A similarity function embedded in a criterion function is to a large extent is responsible to analyze the intrinsic structure of the data. If appropriate similarity…mehr

Produktbeschreibung
To explore and utilize huge amount of text documents is a major question in the area of information retrieval and text mining. All the methods aiming to find groups of entities utilizes similarity or dissimilarity measure. It is necessary to analyse how similarity measure behave on text documents before developing or modifying a good similarity measure for document clustering to understand the effectiveness of the technique. A similarity function embedded in a criterion function is to a large extent is responsible to analyze the intrinsic structure of the data. If appropriate similarity measures are used with specific clustering technique the efficiency and accuracy of the information discovery task can be enhanced. Use of appropriate measures not only improves the provenance and credit-ability of the retrieved information but also helps to overcome the time and cost complexity of the process. This book focuses on identifying the various similarity measure for Clustering. An imperative method for measuring similarity between text documents is illustrated to cluster the documents using hierarchical clustering and feature selection method using Matlab.
Autorenporträt
Dr. Neelam Singh ist außerordentliche Professorin in der Abteilung für Informatik und Ingenieurwesen der Graphic Era Deemed to be University, Dehradun. Sie hat mehr als 15 Forschungsarbeiten in internationalen Fachzeitschriften/Konferenzen im Bereich Machine Leaning, Big Data und Cloud Computing veröffentlicht. Ihre Forschungsinteressen umfassen ML, Big Data und Cloud.