Fibre bundles play an important role in just about every aspect of modern geometry and topology. Basic properties, homotopy classification, and characteristic classes of fibre bundles have become an essential part of graduate mathematical education for students in geometry and mathematical physics. In this third edition two new chapters on the gauge group of a bundle and on the differential forms representing characteristic classes of complex vector bundles on manifolds have been added. These chapters result from the important role of the gauge group in mathematical physics and the continual…mehr
Fibre bundles play an important role in just about every aspect of modern geometry and topology. Basic properties, homotopy classification, and characteristic classes of fibre bundles have become an essential part of graduate mathematical education for students in geometry and mathematical physics. In this third edition two new chapters on the gauge group of a bundle and on the differential forms representing characteristic classes of complex vector bundles on manifolds have been added. These chapters result from the important role of the gauge group in mathematical physics and the continual usefulness of characteristic classes defined with connections on vector bundles.
1 Preliminaries on Homotopy Theory.- I The General Theory of Fibre Bundles.- 2 Generalities on Bundles.- 3 Vector Bundles.- 4 General Fibre Bundles.- 5 Local Coordinate Description of Fibre Bundles.- 6 Change of Structure Group in Fibre Bundles.- 7 The Gauge Group of a Principal Bundle.- 8 Calculations Involving the Classical Groups.- II Elements of K-Theory.- 9 Stability Properties of Vector Bundles.- 10 Relative K-Theory.- 11 Bott Periodicity in the Complex Case.- 12 Clifford Algebras.- 13 The Adams Operations and Representations.- 14 Representation Rings of Classical Groups.- 15 The Hopf Invariant.- 16 Vector Fields on the Sphere.- III Characteristic Classes.- 17 Chern Classes and Stiefel-Whitney Classes.- 18 Differentiable Manifolds.- 19 Characteristic Classes and Connections.- 20 General Theory of Characteristic Classes.- Appendix 1 Dold's Theory of Local Properties of Bundles.- Appendix 2 On the Double Suspension.- 4. Single Suspension Sequences.- 7. Double Suspension Sequences.
1 Preliminaries on Homotopy Theory.- I The General Theory of Fibre Bundles.- 2 Generalities on Bundles.- 3 Vector Bundles.- 4 General Fibre Bundles.- 5 Local Coordinate Description of Fibre Bundles.- 6 Change of Structure Group in Fibre Bundles.- 7 The Gauge Group of a Principal Bundle.- 8 Calculations Involving the Classical Groups.- II Elements of K-Theory.- 9 Stability Properties of Vector Bundles.- 10 Relative K-Theory.- 11 Bott Periodicity in the Complex Case.- 12 Clifford Algebras.- 13 The Adams Operations and Representations.- 14 Representation Rings of Classical Groups.- 15 The Hopf Invariant.- 16 Vector Fields on the Sphere.- III Characteristic Classes.- 17 Chern Classes and Stiefel-Whitney Classes.- 18 Differentiable Manifolds.- 19 Characteristic Classes and Connections.- 20 General Theory of Characteristic Classes.- Appendix 1 Dold's Theory of Local Properties of Bundles.- Appendix 2 On the Double Suspension.- 4. Single Suspension Sequences.- 7. Double Suspension Sequences.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497