G. N. Fursey
Field Emission in Vacuum Microelectronics
G. N. Fursey
Field Emission in Vacuum Microelectronics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.
Andere Kunden interessierten sich auch für
- Satoru Sugano / Norimichi Kojima (eds.)Magneto-Optics125,99 €
- Hema SinghActive Cancellation of Probing in Linear Dipole Phased Array37,99 €
- Peter Michler (ed.)Single Quantum Dots125,99 €
- Hema SinghParallel-Fed Planar Dipole Antenna Arrays for Low-Observable Platforms37,99 €
- Iman AskerzadeModern Aspects of Josephson Dynamics and Superconductivity Electronics63,99 €
- Superconducting Devices in Quantum Optics74,99 €
- Hema SinghScattering Cross Section of Unequal Length Dipole Arrays37,99 €
-
-
-
Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Microdevices: Physics and Fabrication Technologies
- Verlag: Springer Netherlands
- 2005
- Seitenzahl: 224
- Erscheinungstermin: 21. Januar 2005
- Englisch
- Abmessung: 247mm x 170mm x 17mm
- Gewicht: 615g
- ISBN-13: 9780306474507
- ISBN-10: 0306474506
- Artikelnr.: 13743270
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Microdevices: Physics and Fabrication Technologies
- Verlag: Springer Netherlands
- 2005
- Seitenzahl: 224
- Erscheinungstermin: 21. Januar 2005
- Englisch
- Abmessung: 247mm x 170mm x 17mm
- Gewicht: 615g
- ISBN-13: 9780306474507
- ISBN-10: 0306474506
- Artikelnr.: 13743270
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
George N. Fursey, Surface Physics and Electronic Research Center, St. Petersburg, Russia
Foreword. Historical Overview.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.
Foreword. Historical Overview.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.