Adolf J. Schwab
Field Theory Concepts
Electromagnetic Fields. Maxwell¿s Equations grad, curl, div. etc. Finite-Element Method. Finite-Difference Method. Charge Simulation Method. Monte Carlo Method
Adolf J. Schwab
Field Theory Concepts
Electromagnetic Fields. Maxwell¿s Equations grad, curl, div. etc. Finite-Element Method. Finite-Difference Method. Charge Simulation Method. Monte Carlo Method
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
"Field Theory Concepts" is a new approach to the teachingand understanding of field theory. Exploiting formal analo-gies of electric, magnetic, and conduction fields andintroducing generic concepts results in a transparentlystructured electomagnetic field theory. Highly illustrativeterms alloweasyaccess to the concepts of curl and div whichgenerally are conceptually demanding. Emphasis is placed onthe static, quasistatic and dynamic nature of fields.Eventually, numerical field calculation algorithms, e.g.Finite Element method and Monte Carlo method, are presentedin a concise yet illustrative manner.…mehr
Andere Kunden interessierten sich auch für
- A. C. EringenElectrodynamics of Continua I97,99 €
- A. C. EringenElectrodynamics of Continua II75,99 €
- Electron Theory and Quantum Electrodynamics112,99 €
- Jonathan P. Dowling (Hrsg.)Electron Theory and Quantum Electrodynamics121,99 €
- Charles W. SteeleNumerical Computation of Electric and Magnetic Fields134,99 €
- Günther LehnerElectromagnetic Field Theory for Engineers and Physicists79,99 €
- Henning F. HarmuthElectromagnetic Signals75,99 €
-
-
-
"Field Theory Concepts" is a new approach to the teachingand understanding of field theory. Exploiting formal analo-gies of electric, magnetic, and conduction fields andintroducing generic concepts results in a transparentlystructured electomagnetic field theory. Highly illustrativeterms alloweasyaccess to the concepts of curl and div whichgenerally are conceptually demanding. Emphasis is placed onthe static, quasistatic and dynamic nature of fields.Eventually, numerical field calculation algorithms, e.g.Finite Element method and Monte Carlo method, are presentedin a concise yet illustrative manner.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer, Berlin
- Softcover reprint of the original 1st ed. 1988
- Seitenzahl: 236
- Erscheinungstermin: 14. April 2012
- Englisch
- Abmessung: 244mm x 170mm x 13mm
- Gewicht: 414g
- ISBN-13: 9783642489433
- ISBN-10: 3642489435
- Artikelnr.: 36120825
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Springer, Berlin
- Softcover reprint of the original 1st ed. 1988
- Seitenzahl: 236
- Erscheinungstermin: 14. April 2012
- Englisch
- Abmessung: 244mm x 170mm x 13mm
- Gewicht: 414g
- ISBN-13: 9783642489433
- ISBN-10: 3642489435
- Artikelnr.: 36120825
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Dr. ADOLF JOSEF SCHWAB studierte und promovierte an der Elite-Universität Karlsruhe auf dem Gebiet der Elektrotechnik. Seinem Aufenthalt als Postdoctoral Fellow am MIT in den USA folgte 1972 die Habilitation. 1976 erhielt er einen Ruf als Professor an die Universität Darmstadt, 1978 an die Universität Dortmund. Im Jahre 1980 wurde er zum Ordentlichen Professor und Direktor des Instituts für Elektroenergiesysteme und Hochspannungstechnik an der Elite-Universität Karlsruhe ernannt. Von 1989 bis 1993 leitete er das ABB Konzernforschungszentrum in Heidelberg. Heute ist Prof. Schwab Ordinarius im Ruhestand und leitet die Prof. Schwab Consulting und Partner.
1 Elementary Concepts of Electric and Magnetic Fields.- 1.1 Flux and Flux Density of Vector Fields.- 1.2 Equations of Matter - Constitutive Relations.- 2 Types of Vector Fields.- 2.1 Electric Source Fields.- 2.2 Electric and Magnetic Vortex Fields.- 2.3 General Vector Fields.- 3 Field Theory Equations.- 3.1 Integral Form of Maxwells Equations.- 3.2 Law of Continuity in Integral Form Source Strength of Current Density Fields.- 3.3 Differential Form of Maxwell's Equations.- 3.4 Law of Continuity in Differential Form Source Density of Current Density Fields.- 3.5 Maxwell's Equations in Complex Notation.- 3.6 Integral Theorems of Stokes and Gauss.- 3.7 Network Model of Induction.- 4 Gradient, Potential, Potential Function.- 4.1 Gradient of a Scalar Field.- 4.2 Potential and Potential Function of Static Electric Fields.- 4.3 Development of the Potential Function from a Given Charge Distribution.- 4.4 Potential Equations.- 4.5 Electric Vector Potential.- 4.6 Vector Potential of the Conduction Field.- 5 Potential and Potential Function of Magnetostatic Fields.- 5.1 Magnetic Scalar Potential.- 5.2 Potential Equation for Magnetic Scalar Potentials.- 5.3 Magnetic Vector Potential.- 5.4 Potential Equation for Magnetic Vector Potentials.- 6 Classification of Electric and Magnetic Fields.- 6.1 Stationary Fields.- 6.2 Quasi-Stationary Fields (Steady-State) Fields.- 6.3 Nonstationary Fields, Electromagnetic Waves.- 7 Transmission-Line Equations.- 8 Typical Differential Equations of Electrodynamics and Mathematical Physics.- 8.1 Generalized Telegraphist's Equation.- 8.2 Telegraphist's Equation with a, b>0; c=0.- 8.3 Telegraphist's Equation with a>0; b=0; c=0.- 8.4 Telegraphist's Equation with b>0; a=0; c=0.- 8.5 Helmholtz Equation.- 8.6 Schroedinger Equation.- 8.7Lorentz's Invariance of Maxwell's Equations.- 9 Numerical Calculation of Potential Fields.- 9.1 Finite-Element Method.- 9.2 Finite-Difference Method.- 9.3 Charge Simulation Method.- 9.4 Monte Carlo Method.- 9.5 General Remarks on Numerical Field Calculation.- A1 Units.- A2 Scalar and Vector Integrals.- A3 Vector Operations in Special Coordinate Systems.- A5 Complex Notation of Harmonic Quantities.- Literature.
1 Elementary Concepts of Electric and Magnetic Fields.- 1.1 Flux and Flux Density of Vector Fields.- 1.2 Equations of Matter - Constitutive Relations.- 2 Types of Vector Fields.- 2.1 Electric Source Fields.- 2.2 Electric and Magnetic Vortex Fields.- 2.3 General Vector Fields.- 3 Field Theory Equations.- 3.1 Integral Form of Maxwells Equations.- 3.2 Law of Continuity in Integral Form Source Strength of Current Density Fields.- 3.3 Differential Form of Maxwell's Equations.- 3.4 Law of Continuity in Differential Form Source Density of Current Density Fields.- 3.5 Maxwell's Equations in Complex Notation.- 3.6 Integral Theorems of Stokes and Gauss.- 3.7 Network Model of Induction.- 4 Gradient, Potential, Potential Function.- 4.1 Gradient of a Scalar Field.- 4.2 Potential and Potential Function of Static Electric Fields.- 4.3 Development of the Potential Function from a Given Charge Distribution.- 4.4 Potential Equations.- 4.5 Electric Vector Potential.- 4.6 Vector Potential of the Conduction Field.- 5 Potential and Potential Function of Magnetostatic Fields.- 5.1 Magnetic Scalar Potential.- 5.2 Potential Equation for Magnetic Scalar Potentials.- 5.3 Magnetic Vector Potential.- 5.4 Potential Equation for Magnetic Vector Potentials.- 6 Classification of Electric and Magnetic Fields.- 6.1 Stationary Fields.- 6.2 Quasi-Stationary Fields (Steady-State) Fields.- 6.3 Nonstationary Fields, Electromagnetic Waves.- 7 Transmission-Line Equations.- 8 Typical Differential Equations of Electrodynamics and Mathematical Physics.- 8.1 Generalized Telegraphist's Equation.- 8.2 Telegraphist's Equation with a, b>0; c=0.- 8.3 Telegraphist's Equation with a>0; b=0; c=0.- 8.4 Telegraphist's Equation with b>0; a=0; c=0.- 8.5 Helmholtz Equation.- 8.6 Schroedinger Equation.- 8.7Lorentz's Invariance of Maxwell's Equations.- 9 Numerical Calculation of Potential Fields.- 9.1 Finite-Element Method.- 9.2 Finite-Difference Method.- 9.3 Charge Simulation Method.- 9.4 Monte Carlo Method.- 9.5 General Remarks on Numerical Field Calculation.- A1 Units.- A2 Scalar and Vector Integrals.- A3 Vector Operations in Special Coordinate Systems.- A5 Complex Notation of Harmonic Quantities.- Literature.