- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The authors develop a systematic applied mathematics perspective on the problems associated with filtering complex turbulent systems.
Andere Kunden interessierten sich auch für
- Damir Z. ArovLinear State/Signal Systems200,99 €
- Jonathan R. PartingtonLinear Operators and Linear Systems83,99 €
- Systems Modeling and Complex Networks Analysis160,99 €
- Steven R. FinchMathematical Constants II175,99 €
- Gregory F. LawlerRandom Walk103,99 €
- Thomas A. GarrityAll the Mathematics You Missed103,99 €
- C. T. C. WallSingular Points of Plane Curves193,99 €
-
-
-
The authors develop a systematic applied mathematics perspective on the problems associated with filtering complex turbulent systems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 368
- Erscheinungstermin: 23. Februar 2012
- Englisch
- Abmessung: 250mm x 175mm x 24mm
- Gewicht: 814g
- ISBN-13: 9781107016668
- ISBN-10: 1107016665
- Artikelnr.: 34570748
- Verlag: Cambridge University Press
- Seitenzahl: 368
- Erscheinungstermin: 23. Februar 2012
- Englisch
- Abmessung: 250mm x 175mm x 24mm
- Gewicht: 814g
- ISBN-13: 9781107016668
- ISBN-10: 1107016665
- Artikelnr.: 34570748
Andrew J. Majda is the Morse Professor of Arts and Sciences at the Courant Institute of New York University.
Preface
1. Introduction and overview: mathematical strategies for filtering turbulent systems
Part I. Fundamentals: 2. Filtering a stochastic complex scalar: the prototype test problem
3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model
4. Continuous and discrete Fourier series and numerical discretization
Part II. Mathematical Guidelines for Filtering Turbulent Signals: 5. Stochastic models for turbulence
6. Filtering turbulent signals: plentiful observations
7. Filtering turbulent signals: regularly spaced sparse observations
8. Filtering linear stochastic PDE models with instability and model error
Part III. Filtering Turbulent Nonlinear Dynamical Systems: 9. Strategies for filtering nonlinear systems
10. Filtering prototype nonlinear slow-fast systems
11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods
12. Filtering turbulent nonlinear dynamical systems by linear stochastic models
13. Stochastic parameterized extended Kalman filter for filtering turbulent signal with model error
14. Filtering turbulent tracers from partial observations: an exactly solvable test model
15. The search for efficient skilful particle filters for high dimensional turbulent dynamical systems
References
Index.
1. Introduction and overview: mathematical strategies for filtering turbulent systems
Part I. Fundamentals: 2. Filtering a stochastic complex scalar: the prototype test problem
3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model
4. Continuous and discrete Fourier series and numerical discretization
Part II. Mathematical Guidelines for Filtering Turbulent Signals: 5. Stochastic models for turbulence
6. Filtering turbulent signals: plentiful observations
7. Filtering turbulent signals: regularly spaced sparse observations
8. Filtering linear stochastic PDE models with instability and model error
Part III. Filtering Turbulent Nonlinear Dynamical Systems: 9. Strategies for filtering nonlinear systems
10. Filtering prototype nonlinear slow-fast systems
11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods
12. Filtering turbulent nonlinear dynamical systems by linear stochastic models
13. Stochastic parameterized extended Kalman filter for filtering turbulent signal with model error
14. Filtering turbulent tracers from partial observations: an exactly solvable test model
15. The search for efficient skilful particle filters for high dimensional turbulent dynamical systems
References
Index.
Preface
1. Introduction and overview: mathematical strategies for filtering turbulent systems
Part I. Fundamentals: 2. Filtering a stochastic complex scalar: the prototype test problem
3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model
4. Continuous and discrete Fourier series and numerical discretization
Part II. Mathematical Guidelines for Filtering Turbulent Signals: 5. Stochastic models for turbulence
6. Filtering turbulent signals: plentiful observations
7. Filtering turbulent signals: regularly spaced sparse observations
8. Filtering linear stochastic PDE models with instability and model error
Part III. Filtering Turbulent Nonlinear Dynamical Systems: 9. Strategies for filtering nonlinear systems
10. Filtering prototype nonlinear slow-fast systems
11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods
12. Filtering turbulent nonlinear dynamical systems by linear stochastic models
13. Stochastic parameterized extended Kalman filter for filtering turbulent signal with model error
14. Filtering turbulent tracers from partial observations: an exactly solvable test model
15. The search for efficient skilful particle filters for high dimensional turbulent dynamical systems
References
Index.
1. Introduction and overview: mathematical strategies for filtering turbulent systems
Part I. Fundamentals: 2. Filtering a stochastic complex scalar: the prototype test problem
3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model
4. Continuous and discrete Fourier series and numerical discretization
Part II. Mathematical Guidelines for Filtering Turbulent Signals: 5. Stochastic models for turbulence
6. Filtering turbulent signals: plentiful observations
7. Filtering turbulent signals: regularly spaced sparse observations
8. Filtering linear stochastic PDE models with instability and model error
Part III. Filtering Turbulent Nonlinear Dynamical Systems: 9. Strategies for filtering nonlinear systems
10. Filtering prototype nonlinear slow-fast systems
11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods
12. Filtering turbulent nonlinear dynamical systems by linear stochastic models
13. Stochastic parameterized extended Kalman filter for filtering turbulent signal with model error
14. Filtering turbulent tracers from partial observations: an exactly solvable test model
15. The search for efficient skilful particle filters for high dimensional turbulent dynamical systems
References
Index.