101,99 €
inkl. MwSt.
Versandkostenfrei*
Sofort lieferbar
payback
51 °P sammeln
  • Broschiertes Buch

FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard - BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a…mehr

Produktbeschreibung
FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard - BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a step-by-step approach for the efficient extraction of model parameters. With this book, users will learn Why you should use FinFET, The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG), Parameter extraction in BSIM-CMG FinFET circuit design and simulation, and more.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Yogesh Singh Chauhan is a Chair Professor in the Department of Electrical Engineering at the Indian Institute of Technology Kanpur, India. He is the developer of several industry standard models: ASM-HEMT, BSIM-BULK (formerly BSIM6), BSIM-CMG, BSIM-IMG, BSIM4 and BSIM-SOI models. His research group is involved in developing compact models for GaN transistors, FinFET, nanosheet/gate-all-around FETs, FDSOI transistors, negative capacitance FETs and 2D FETs. His research interests are RF characterization, modeling, and simulation of semiconductor devices.