Das vorliegende Werk ist ein Lehr- und Arbeitsbuch für den Selbstunterricht, für die Rechenpraxis und für Übungen. Es richtet sich an jeden Interessierten, mag er Physiker oder Ingenieur, Analytiker oder Numeriker, Chemiker oder Geowissenschaftler sein, mag er große oder geringe Vorkenntnisse besitzen. Im Teil über finite Differenzen soll der Leser von einfachsten Aufgaben bis hin zu komplexen Problemen und Techniken (numerische Dispersion, upstream-weighting, Vorkonditionierung von Gleichungssystemen usw.) geführt werden, und zwar von der analytischen Fassung der Aufgabe bis zum fertigen,…mehr
Das vorliegende Werk ist ein Lehr- und Arbeitsbuch für den Selbstunterricht, für die Rechenpraxis und für Übungen. Es richtet sich an jeden Interessierten, mag er Physiker oder Ingenieur, Analytiker oder Numeriker, Chemiker oder Geowissenschaftler sein, mag er große oder geringe Vorkenntnisse besitzen. Im Teil über finite Differenzen soll der Leser von einfachsten Aufgaben bis hin zu komplexen Problemen und Techniken (numerische Dispersion, upstream-weighting, Vorkonditionierung von Gleichungssystemen usw.) geführt werden, und zwar von der analytischen Fassung der Aufgabe bis zum fertigen, knappen, für dieses Buch entwickelten Programm (in Fortran 77 geschrieben). Der Teil über finite Elemente setzt keine Strukturmechanik voraus. Er spricht Leser an, die finite Elemente als Alternative zu finiten Differenzen betrachten und nur Kenntnisse aus der Differential- und Integralrechnung mehrerer Variablen mitbringen. Deshalb wird die Finite-Element-Methode in einfacher Weise aus dem Grundgedanken des Ritzschen Prinzips entwickelt, und zwar von der Differentialgleichung über die zugehörige Variationsaufgabe zum algebraischen Gesamtgleichungssystem.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Finite Differenzen.- 0 Allgemeine Grundlagen.- 0.1 Zur Schreibweise.- 0.2 Synonyma des Wortes Definitionsbereich .- 0.3 Nebenbedingungen.- 0.4 Zur Klassifizierung partieller Differentialgleichungen.- 0.5 Iteration.- 0.6 Matrizen und Gauß-Elimination.- 0.7 Gestaffelte Systeme, Dreiecksmatrizen, LR-Zerlegung.- 1 Grundlagen der Differenzenmethode.- 1.1 Prinzip und einfachste Formeln.- 1.2 Die Formel von Taylor.- 1.3 Approximation der ersten Ableitung.- 1.4 Approximation der zweiten Ableitung.- 1.5 Explizite und implizite Systeme.- 1.6 Stabile und instabile Systeme.- 1.7 Stabilität im Sinne John von Neumanns.- 1.8 Elliptische, parabolische und hyperbolische Gleichungen.- 1.9 Gitter und Randbedingungen.- 1.10 Unregelmäßige Gitter. Mehrgitterverfahren Lokale Netzverfeinerung.- 1.11 Höhere Ableitungen auf quadratischen Gittern.- 1.12 Differenzenformeln hoher Genauigkeit.- 1.13 Differentialgleichungen mit variablen Koeffizienten Eichung/history matching. Stream weighting.- 1.14 Numerische Dispersion 1.- 1.15 Numerische Dispersion 2.- 1.16 Neun-Punkte Formeln für den Laplace Operator.- 1.17 Herleitung der Neun-Punkte Formel D(p,u).- 1.18 Praktische Fragen.- 1.19 Fehlernormen.- 1.20 Diskretisierung der selbstadjungierten Form (Kux)x.- 1.21 Das Liebmannsche Mittelungsverfahren: Ein elementares klassisches Beispiel der Differenzenmethode.- 1.22 Literatur.- 2 Parabolische Gleichungen I.- 2.1 Zusammenfassung.- 2.2 Lineare tridiagonale Systeme Das Programm Algorithmus TRIDIA.- 2.3 Nichtlineare tridiagonale Systeme.- 2.4 Implizite Lösung von uxx + Q(x,t) = cut.- 2.5 Randbedingungen.- 2.6 Das Programm implizit.f77.- 2.7 Die Crank-Nicolson Variante CN. Das Programm cranknic.f77.- 2.8 Die Gleichung uxx + uyy + Q(x,y,t) = cut · ADIP.- 2.9 Das ADIP-Programm adipr.f77 auf Rechteckgebieten.- 2.10 Die Gleichung uxx + uyy + uzz + Q(x,y,z,t) = cut.- 2.11 Nichtlinearitäten, Nichtrechteckgebiete und Anisotropie.- 2.12 Explizite Lösung der 2- und 3-dimensionalen Gleichung.- 2.13 Literatur.- 3 Elliptische Gleichungen.- 3.1 Zusammenfassung.- 3.2 Bandmatrizen Der Gauß-Algorithmus BANDMATRIX.- 3.3 Direkte Lösung der Gleichungen von Laplace und Poisson mit hoher Genauigkeit.- 3.4 Das Programm poissonl.f77.- 3.5 Ein einfaches Mehrgitterverfahren für die Gleichungen von Poisson und Laplace.- 3.6 Das Programm multigrid.f77.- 3.7 Die Gleichung von Helmholtz.- 3.8 Fehlerabschätzung nach Richardson.- 3.9 Die nichtlineare selbstadjungierte elliptischparabolische Gleichung auf inhomogenen, unregelmäßig berandeten Gebieten.- 3.10 Die selbstadjungierte elliptische bzw. parabolische Differenzengleichung.- 3.11 Die Koeffizienten S und T.- 3.12 Die Randbedingungen.- 3.13 Das Programm adjung.f77.- 3.14 Lösung elliptischer Gleichungen mit adjung.f77.- 3.15 Die Austauschbarkeit elliptischer und parabolischer Programme.- 3.16 Douglas-Rachford iterativ (DRI).- 3.17 Die Biharmonische ?4u = ?2(?2u)=0.- 3.18 Literatur.- 4 Hyperbolische Gleichungen.- 4.1 Zusammenfassung.- 4.2 Charakteristiken.- 4.3 Die Gleichung a(x,y)uxx?c(x,y)uyy = g(x,y)u+f(x,y) mit a(x,y)0 und c(x,y)0.- 4.4 Die Wellengleichungen utt = ?uxx + f, utt = ?(uxx + uyy) + f und utt = p(uxx + uyy + uzz) + f mit µ = c2.- 4.5 Die Bestimmung der zulässigen Maschenweiten für Wellengleichungen. Das Kriterium von Courant, Friedrichs und Lewy.- 4.6 Das Programm welle.f77 für 2D-Wellengleichungen.- 4.7 Die Charakteristiken der quasilinearen Gleichung erster Ordnung.- 4.8 Die Charakteristiken quasilinearer Systeme erster Ordnung.- 4.9 Die Lösung hyperbolischer kanonischer Systeme.- 4.10 Beweis der Konvergenz der Näherungslösung.- 4.11 Systeme vom Telegraphengleichungstyp.- 4.12 Gleichungen und Systeme vom Typ ut = ??(x,t)vx.- 4.13 Das Programm utvx.f77.- 4.14 Numerische Längsdispersion 1.- 4.15 Das Lax-Wendroff Schema.- 4.16 Das Programm laxwf.f77.- 4.17 Numerische Längsdispersion 2.- 4.18 Integration der Gleichung ux + vy = 0.- 4.19 Literatur.- 5 Parabolische Gleichungen II.- 5.1 Zusammenfassung.- 5.2
Finite Differenzen.- 0 Allgemeine Grundlagen.- 0.1 Zur Schreibweise.- 0.2 Synonyma des Wortes Definitionsbereich .- 0.3 Nebenbedingungen.- 0.4 Zur Klassifizierung partieller Differentialgleichungen.- 0.5 Iteration.- 0.6 Matrizen und Gauß-Elimination.- 0.7 Gestaffelte Systeme, Dreiecksmatrizen, LR-Zerlegung.- 1 Grundlagen der Differenzenmethode.- 1.1 Prinzip und einfachste Formeln.- 1.2 Die Formel von Taylor.- 1.3 Approximation der ersten Ableitung.- 1.4 Approximation der zweiten Ableitung.- 1.5 Explizite und implizite Systeme.- 1.6 Stabile und instabile Systeme.- 1.7 Stabilität im Sinne John von Neumanns.- 1.8 Elliptische, parabolische und hyperbolische Gleichungen.- 1.9 Gitter und Randbedingungen.- 1.10 Unregelmäßige Gitter. Mehrgitterverfahren Lokale Netzverfeinerung.- 1.11 Höhere Ableitungen auf quadratischen Gittern.- 1.12 Differenzenformeln hoher Genauigkeit.- 1.13 Differentialgleichungen mit variablen Koeffizienten Eichung/history matching. Stream weighting.- 1.14 Numerische Dispersion 1.- 1.15 Numerische Dispersion 2.- 1.16 Neun-Punkte Formeln für den Laplace Operator.- 1.17 Herleitung der Neun-Punkte Formel D(p,u).- 1.18 Praktische Fragen.- 1.19 Fehlernormen.- 1.20 Diskretisierung der selbstadjungierten Form (Kux)x.- 1.21 Das Liebmannsche Mittelungsverfahren: Ein elementares klassisches Beispiel der Differenzenmethode.- 1.22 Literatur.- 2 Parabolische Gleichungen I.- 2.1 Zusammenfassung.- 2.2 Lineare tridiagonale Systeme Das Programm Algorithmus TRIDIA.- 2.3 Nichtlineare tridiagonale Systeme.- 2.4 Implizite Lösung von uxx + Q(x,t) = cut.- 2.5 Randbedingungen.- 2.6 Das Programm implizit.f77.- 2.7 Die Crank-Nicolson Variante CN. Das Programm cranknic.f77.- 2.8 Die Gleichung uxx + uyy + Q(x,y,t) = cut · ADIP.- 2.9 Das ADIP-Programm adipr.f77 auf Rechteckgebieten.- 2.10 Die Gleichung uxx + uyy + uzz + Q(x,y,z,t) = cut.- 2.11 Nichtlinearitäten, Nichtrechteckgebiete und Anisotropie.- 2.12 Explizite Lösung der 2- und 3-dimensionalen Gleichung.- 2.13 Literatur.- 3 Elliptische Gleichungen.- 3.1 Zusammenfassung.- 3.2 Bandmatrizen Der Gauß-Algorithmus BANDMATRIX.- 3.3 Direkte Lösung der Gleichungen von Laplace und Poisson mit hoher Genauigkeit.- 3.4 Das Programm poissonl.f77.- 3.5 Ein einfaches Mehrgitterverfahren für die Gleichungen von Poisson und Laplace.- 3.6 Das Programm multigrid.f77.- 3.7 Die Gleichung von Helmholtz.- 3.8 Fehlerabschätzung nach Richardson.- 3.9 Die nichtlineare selbstadjungierte elliptischparabolische Gleichung auf inhomogenen, unregelmäßig berandeten Gebieten.- 3.10 Die selbstadjungierte elliptische bzw. parabolische Differenzengleichung.- 3.11 Die Koeffizienten S und T.- 3.12 Die Randbedingungen.- 3.13 Das Programm adjung.f77.- 3.14 Lösung elliptischer Gleichungen mit adjung.f77.- 3.15 Die Austauschbarkeit elliptischer und parabolischer Programme.- 3.16 Douglas-Rachford iterativ (DRI).- 3.17 Die Biharmonische ?4u = ?2(?2u)=0.- 3.18 Literatur.- 4 Hyperbolische Gleichungen.- 4.1 Zusammenfassung.- 4.2 Charakteristiken.- 4.3 Die Gleichung a(x,y)uxx?c(x,y)uyy = g(x,y)u+f(x,y) mit a(x,y)0 und c(x,y)0.- 4.4 Die Wellengleichungen utt = ?uxx + f, utt = ?(uxx + uyy) + f und utt = p(uxx + uyy + uzz) + f mit µ = c2.- 4.5 Die Bestimmung der zulässigen Maschenweiten für Wellengleichungen. Das Kriterium von Courant, Friedrichs und Lewy.- 4.6 Das Programm welle.f77 für 2D-Wellengleichungen.- 4.7 Die Charakteristiken der quasilinearen Gleichung erster Ordnung.- 4.8 Die Charakteristiken quasilinearer Systeme erster Ordnung.- 4.9 Die Lösung hyperbolischer kanonischer Systeme.- 4.10 Beweis der Konvergenz der Näherungslösung.- 4.11 Systeme vom Telegraphengleichungstyp.- 4.12 Gleichungen und Systeme vom Typ ut = ??(x,t)vx.- 4.13 Das Programm utvx.f77.- 4.14 Numerische Längsdispersion 1.- 4.15 Das Lax-Wendroff Schema.- 4.16 Das Programm laxwf.f77.- 4.17 Numerische Längsdispersion 2.- 4.18 Integration der Gleichung ux + vy = 0.- 4.19 Literatur.- 5 Parabolische Gleichungen II.- 5.1 Zusammenfassung.- 5.2
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826