Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.
Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Jean Donea is the author of Finite Element Methods for Flow Problems, published by Wiley. Antonio Huerta is the author of Finite Element Methods for Flow Problems, published by Wiley.
Inhaltsangabe
Preface. 1. Introduction and preliminaries. Finite elements in fluid dynamics. Subjects covered. Kinematical descriptions of the flow field. The basic conservation equations. Basic ingredients of the finite element method. 2. Steady transport problems. Problem statement. Galerkin approximation. Early Petrov-Galerkin methods. Stabilization techniques. Other stabilization techniques and new trends. Applications and solved exercises. 3. Unsteady convective transport. Introduction. Problem statement. The methods of characteristics. Classical time and space discretization techniques. Stability and accuracy analysis. Taylor-Galerkin Methods. An introduction to monotonicity-preserving schemes. Least-squares-based spatial discretization. The discontinuous Galerkin method. Space-time formulations. Applications and solved exercises. 4. Compressible Flow Problems. Introduction. Nonlinear hyperbolic equations. The Euler equations. Spatial discretization techniques. Numerical treatment of shocks. Nearly incompressible flows. Fluid-structure interaction. Solved exercises. 5. Unsteady convection-diffusion problems. Introduction. Problem statement. Time discretization procedures. Spatial discretization procedures. Stabilized space-time formulations. Solved exercises. 6. Viscous incompressible flows. Introduction Basic concepts. Main issues in incompressible flow problems. Trial solutions and weighting functions. Stationary Stokes problem. Steady Navier-Stokes problem. Unsteady Navier-Stokes equations. Applications and Solved Exercices. References. Index.
Preface. 1. Introduction and preliminaries. Finite elements in fluid dynamics. Subjects covered. Kinematical descriptions of the flow field. The basic conservation equations. Basic ingredients of the finite element method. 2. Steady transport problems. Problem statement. Galerkin approximation. Early Petrov-Galerkin methods. Stabilization techniques. Other stabilization techniques and new trends. Applications and solved exercises. 3. Unsteady convective transport. Introduction. Problem statement. The methods of characteristics. Classical time and space discretization techniques. Stability and accuracy analysis. Taylor-Galerkin Methods. An introduction to monotonicity-preserving schemes. Least-squares-based spatial discretization. The discontinuous Galerkin method. Space-time formulations. Applications and solved exercises. 4. Compressible Flow Problems. Introduction. Nonlinear hyperbolic equations. The Euler equations. Spatial discretization techniques. Numerical treatment of shocks. Nearly incompressible flows. Fluid-structure interaction. Solved exercises. 5. Unsteady convection-diffusion problems. Introduction. Problem statement. Time discretization procedures. Spatial discretization procedures. Stabilized space-time formulations. Solved exercises. 6. Viscous incompressible flows. Introduction Basic concepts. Main issues in incompressible flow problems. Trial solutions and weighting functions. Stationary Stokes problem. Steady Navier-Stokes problem. Unsteady Navier-Stokes equations. Applications and Solved Exercices. References. Index.
Rezensionen
"...essential reading for graduate students and researchers in engineering and applied sciences.." (CAB Abstracts)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826