Rolf Steinbuch
Finite Elemente ¿ Ein Einstieg
Rolf Steinbuch
Finite Elemente ¿ Ein Einstieg
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Die Finite Elemente Methode (FEM) ist heute ein gängiges Werkzeug der Ingenieurspraxis. Zahlreiche Programmpakete erlauben einen effektiven Einsatz des Verfahrens auch in kleineren und mittleren Betrieben. Ziel der Ausbildung ist es, einen Einblick in die dahinter stehenden Verfahren zu geben. Der Lernende soll Schwierigkeiten in manchen Anwendungen erkennen können und einen tiefen Einblick in neue Anwendungsmöglichkeiten bekommen. Dieses Werk vermittelt dem Leser was hinter der FEM steht, wie sie eingesetzt werden kann und worauf bei der Anwendung zu achten ist. Ein kurzer Ausblick auf…mehr
Andere Kunden interessierten sich auch für
- Markus MerkelEindimensionale Finite Elemente49,99 €
- Markus MerkelEindimensionale Finite Elemente34,99 €
- Bernd KleinFEM54,99 €
- Peter SteinkeFinite-Elemente-Methode44,99 €
- Klaus SchierFinite Elemente Modelle der Statik und Festigkeitslehre84,99 €
- P. GrothFEM-Anwendungen84,99 €
- CAD-Expertensystem54,99 €
-
-
-
Die Finite Elemente Methode (FEM) ist heute ein gängiges Werkzeug der Ingenieurspraxis. Zahlreiche Programmpakete erlauben einen effektiven Einsatz des Verfahrens auch in kleineren und mittleren Betrieben. Ziel der Ausbildung ist es, einen Einblick in die dahinter stehenden Verfahren zu geben. Der Lernende soll Schwierigkeiten in manchen Anwendungen erkennen können und einen tiefen Einblick in neue Anwendungsmöglichkeiten bekommen. Dieses Werk vermittelt dem Leser was hinter der FEM steht, wie sie eingesetzt werden kann und worauf bei der Anwendung zu achten ist. Ein kurzer Ausblick auf nichtlineare Probleme und aktuelle Entwicklungen wird ergänzt durch Anhänge, in denen die mathematischen und elastomechanischen Grundkenntnisse wiederholt werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Springer-Lehrbuch
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-63128-6
- 1998.
- Seitenzahl: 284
- Erscheinungstermin: 5. März 1998
- Deutsch
- Abmessung: 235mm x 155mm x 16mm
- Gewicht: 438g
- ISBN-13: 9783540631286
- ISBN-10: 3540631283
- Artikelnr.: 07346821
- Springer-Lehrbuch
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-63128-6
- 1998.
- Seitenzahl: 284
- Erscheinungstermin: 5. März 1998
- Deutsch
- Abmessung: 235mm x 155mm x 16mm
- Gewicht: 438g
- ISBN-13: 9783540631286
- ISBN-10: 3540631283
- Artikelnr.: 07346821
1 Praktisches Rechnen - Beispiele und Probleme.- 1.1 Berechnungen mit begrenzt genauen Zahlen.- 1.2 Numerische Integration.- 1.3 Integration einer Differentialgleichung mit Euler-Verfahren.- 1.4 Ritz-Verfahren.- 1.5 Galerkin-Verfahren.- 2 Grundlagen der FEM.- 2.1 Die drei Bestandteile eines Berechnungsproblems.- 2.2 Ein einfaches Berechnungsproblem.- 2.3 Kontinuum und diskretes System.- 2.4 Diskretisierung des Kontinuums.- 2.5 Ansatzfunktionen.- 2.6 Die Methode der Finiten Elemente.- 2.7 Anwendungsgebiete der FEM.- 3 Zugstab und Fachwerk.- 3.1 Die Steifigkeit des Zugstabs.- 3.2 Zugstabketten, zusammengesetztee Steifigkeiten.- 3.3 Zugstäbe in der Ebene und im Raum.- 3.4 Fachwerke, Gesamtsteifigkeiten, Randbedingungen.- 3.5 Optimierung der Matrizen.- 4 Elastostatik.- 4.1 Grundbegriffe.- 4.2 Das ebene QUAD4-Element.- 4.3 Die Elemente der Elastostatik.- 4.4 Randbedingimgen und Zwangsbedingungen.- 4.5 Balken und Schalen.- 4.6 Strecken-und Flächenlasten.- 4.7 Einige einfache Berechnungsprobleme.- 5 Potentialprobleme.- 5.1 Einige elementare Potentialprobleme.- 5.2 Der Wärmeleitstab.- 5.3 Die FEM, ein Galerkinverfahren.- 5.4 Randbedingungen, Gesamtmatrizen.- 5.5 Die Elemente der Potentialmechanik.- 5.6 Beispiele einfacher Wärmeleitungsberechnungen.- 5.7 Gekoppelte Probleme, Wärmespannungen.- 6. Dynamik.- 6.1 3 Fragestellungen der linearen Dynamik.- 6.2 Massenmatrizen.- 6.3 Dämpfung.- 6.4 Berechnungen von Eigenschwingungen.- 7 Nichtlineare Probleme.- 7.1 Beispiele nichtlinearer Probleme.- 7.2 Klassifizierung nichtlinearer Probleme.- 7.3 Berechnung nichtlinearer Probleme.- 8 Probleme beim Arbeiten mit Finiten Elementen.- 8.1 Aufgabenstellung.- 8.2 Ablauf einer Berechnung.- 8.3 Interpretation.- 8.4 Gefahren bei der Analyse komplexer Systeme.- 9 Entwicklungstendenzen.- 9.1Kostenentwicklung.- 9.2 Mitarbeiter.- 9.3 CAD-FEM Kopplung.- 9.4 Automatische Netzqualifikation.- 9.5 Expertensysteme.- 9.6 FE-Prozesse.- 9.7 Optimierung.- 9.8 Qualitätssicherung.- A1 Mathematische Grundlagen.- A.1.1 Lineare Algebra.- A1.1.1 Matrizen.- A1.1.2 Vektoren.- A1.1.3 Lineare Gleichungssysteme.- A1.2 Differential-und Integralrechnung.- A1.2.1 Grundbegriffe der Differential- und Integralrechnung.- A1.2.2 Funktionen mehrerer Veränderlicher.- A1.2.3 numerische Differentiation und Integration.- A1.2.4 Operatoren.- A1.3 Differential- und Integralgleichungen.- A1.3.1 gewöhnliche Differentialgleichungen.- A1.3.2 Finite Differenzen.- A1.3.3 Ritz- oder Galerkinansatz (Finite Elemente).- A1.3.4 partielle Differentialgleichungen.- A1.3.5 Integralgleichungen.- A2 3 Herangehensweisen der Physik.- A2.1 Energieerhaltungssatz.- A2.2 Stationäre Potentiale.- A2.3 Prinzip der virtuellen Verrückungen.- A3 Dehnungen und Spannungen.- A3.1 Spannungs-Dehnungsbeziehungen.- A3.2 Verschiebungen und Dehnungen.- A3.3 Hauptspannungen.- A3.4 Vergleichsspannungen.- A3.5 Anisotropie.- Literatur.
1 Praktisches Rechnen - Beispiele und Probleme.- 1.1 Berechnungen mit begrenzt genauen Zahlen.- 1.2 Numerische Integration.- 1.3 Integration einer Differentialgleichung mit Euler-Verfahren.- 1.4 Ritz-Verfahren.- 1.5 Galerkin-Verfahren.- 2 Grundlagen der FEM.- 2.1 Die drei Bestandteile eines Berechnungsproblems.- 2.2 Ein einfaches Berechnungsproblem.- 2.3 Kontinuum und diskretes System.- 2.4 Diskretisierung des Kontinuums.- 2.5 Ansatzfunktionen.- 2.6 Die Methode der Finiten Elemente.- 2.7 Anwendungsgebiete der FEM.- 3 Zugstab und Fachwerk.- 3.1 Die Steifigkeit des Zugstabs.- 3.2 Zugstabketten, zusammengesetztee Steifigkeiten.- 3.3 Zugstäbe in der Ebene und im Raum.- 3.4 Fachwerke, Gesamtsteifigkeiten, Randbedingungen.- 3.5 Optimierung der Matrizen.- 4 Elastostatik.- 4.1 Grundbegriffe.- 4.2 Das ebene QUAD4-Element.- 4.3 Die Elemente der Elastostatik.- 4.4 Randbedingimgen und Zwangsbedingungen.- 4.5 Balken und Schalen.- 4.6 Strecken-und Flächenlasten.- 4.7 Einige einfache Berechnungsprobleme.- 5 Potentialprobleme.- 5.1 Einige elementare Potentialprobleme.- 5.2 Der Wärmeleitstab.- 5.3 Die FEM, ein Galerkinverfahren.- 5.4 Randbedingungen, Gesamtmatrizen.- 5.5 Die Elemente der Potentialmechanik.- 5.6 Beispiele einfacher Wärmeleitungsberechnungen.- 5.7 Gekoppelte Probleme, Wärmespannungen.- 6. Dynamik.- 6.1 3 Fragestellungen der linearen Dynamik.- 6.2 Massenmatrizen.- 6.3 Dämpfung.- 6.4 Berechnungen von Eigenschwingungen.- 7 Nichtlineare Probleme.- 7.1 Beispiele nichtlinearer Probleme.- 7.2 Klassifizierung nichtlinearer Probleme.- 7.3 Berechnung nichtlinearer Probleme.- 8 Probleme beim Arbeiten mit Finiten Elementen.- 8.1 Aufgabenstellung.- 8.2 Ablauf einer Berechnung.- 8.3 Interpretation.- 8.4 Gefahren bei der Analyse komplexer Systeme.- 9 Entwicklungstendenzen.- 9.1Kostenentwicklung.- 9.2 Mitarbeiter.- 9.3 CAD-FEM Kopplung.- 9.4 Automatische Netzqualifikation.- 9.5 Expertensysteme.- 9.6 FE-Prozesse.- 9.7 Optimierung.- 9.8 Qualitätssicherung.- A1 Mathematische Grundlagen.- A.1.1 Lineare Algebra.- A1.1.1 Matrizen.- A1.1.2 Vektoren.- A1.1.3 Lineare Gleichungssysteme.- A1.2 Differential-und Integralrechnung.- A1.2.1 Grundbegriffe der Differential- und Integralrechnung.- A1.2.2 Funktionen mehrerer Veränderlicher.- A1.2.3 numerische Differentiation und Integration.- A1.2.4 Operatoren.- A1.3 Differential- und Integralgleichungen.- A1.3.1 gewöhnliche Differentialgleichungen.- A1.3.2 Finite Differenzen.- A1.3.3 Ritz- oder Galerkinansatz (Finite Elemente).- A1.3.4 partielle Differentialgleichungen.- A1.3.5 Integralgleichungen.- A2 3 Herangehensweisen der Physik.- A2.1 Energieerhaltungssatz.- A2.2 Stationäre Potentiale.- A2.3 Prinzip der virtuellen Verrückungen.- A3 Dehnungen und Spannungen.- A3.1 Spannungs-Dehnungsbeziehungen.- A3.2 Verschiebungen und Dehnungen.- A3.3 Hauptspannungen.- A3.4 Vergleichsspannungen.- A3.5 Anisotropie.- Literatur.