- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An easy-to-understand guide covering the key principles of finite element methods and its applications to differential equations.
Andere Kunden interessierten sich auch für
- Daniel Sanz-AlonsoInverse Problems and Data Assimilation99,99 €
- GockenbachUnderstanding and Implementing the Finite Element Method152,99 €
- Maurice PetytIntroduction to Finite Element Vibration Analysis207,99 €
- Avram SidiPractical Extrapolation Methods197,99 €
- Tullio Ceccherini-SilbersteinHarmonic Analysis on Finite Groups119,99 €
- Radhey S. GuptaElements of Numerical Analysis100,99 €
- Alexandre ErnFinite Elements III53,49 €
-
-
-
An easy-to-understand guide covering the key principles of finite element methods and its applications to differential equations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 216
- Erscheinungstermin: 11. Mai 2017
- Englisch
- Abmessung: 251mm x 192mm x 15mm
- Gewicht: 472g
- ISBN-13: 9781108415705
- ISBN-10: 1108415709
- Artikelnr.: 48386028
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 216
- Erscheinungstermin: 11. Mai 2017
- Englisch
- Abmessung: 251mm x 192mm x 15mm
- Gewicht: 472g
- ISBN-13: 9781108415705
- ISBN-10: 1108415709
- Artikelnr.: 48386028
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Sashikumaar Ganesan obtained his Ph.D. from Otto-von-Guericke-Universität Magdeburg, Germany 2006. He was Postdoctoral Fellow at Otto-von-Guericke-Universität Magdeburg, Germany (2006¿08) and Research Associate (2008¿09) at the Imperial College of Science, Technology and Medicine, London. He joined the Indian Institute of Science (IISc), Bangalore as Assistant Professor in 2011. He is currently heading a research group on Numerical Mathematics and Scientific Computing at Supercomputer Education and Research Centre, IISc, Bangalore. His areas of interest include numerical analysis, finite elements in fluid dynamics and high performance computing.
Preface; 1. Sobolev spaces; 1.1. Banach and Hilbert spaces; 1.2. Weak derivatives; 1.3. Sobolev spaces; 2. Elliptic scalar problems; 2.1. A general elliptic problem of second order; 2.2. Weak solution; 2.3. Standard Galerkin method; 2.4. Abstract error estimate; 3. Finite element spaces; 3.1. Simplices and barycentric coordinates; 3.2. Simplicial finite elements and local spaces; 3.3. Construction of finite elements spaces; 3.4. The concept of mapped finite elements: affine mappings; 3.5. Finite elements on rectangular and brick meshes; 3.6. Mapped finite elements: general bijective mappings; 3.7. Mapped Qk finite elements; 3.8. Isoparametric finite elements; 3.9. Further examples of finite elements in C0 and C1; 4. Interpolation and discretization error; 4.1. Transformation formulas; 4.2. Affine equivalent finite elements; 4.3. Canonical interpolation; 4.4. Local and global interpolation error; 4.5. Improved L2 error estimates by duality; 4.6. Interpolation of less smooth functions; 5. Biharmonic equation; 5.1. Deflection of a thin clamped plate; 5.2. Weak formulation of the biharmonic equation; 5.3. Conforming finite element methods; 5.4. Nonconforming finite element methods; 6. Parabolic problems; 6.1. Conservation of energy; 6.2. A general parabolic problem of initial boundary value problems; 6.3. Weak formulation of initial boundary value problems; 6.4. Semidiscretization by finite elements; 6.5. Time discretization; 6.6. Finite elements for high-dimensional parabolic problems; 7. Systems in solid mechanics; 7.1. Linear elasticity; 7.2. Mindlin
Reissner plate; 8. Systems in fluid mechanics; 8.1. Conservation of mass and momentum; 8.2. Weak formulation of the Stokes problem; 8.3. Conforming discretizations of the Stokes problem; 8.4. Nonconforming discretizations of the Stokes problem; 8.5. The nonconforming Crouzeix
Raviart element; 8.6. Further inf
sup stable finite element pairs; 8.7. Equal order stabilized finite elements; 8.8. Navier
Stokes problem with mixed boundary conditions; 8.9. Time discretization and linearization of the Navier
Stokes problem; 9. Implementation of the finite element method; 9.1. Mesh handling and data structure; 9.2. Numerical integration; 9.3. Sparse matrix storage; 9.4. Assembling of system matrices and load vectors; 9.5. Inclusion of boundary conditions; 9.6. Solution of the algebraic systems; 9.7. Object-oriented C++ programming; Bibliography; Index.
Reissner plate; 8. Systems in fluid mechanics; 8.1. Conservation of mass and momentum; 8.2. Weak formulation of the Stokes problem; 8.3. Conforming discretizations of the Stokes problem; 8.4. Nonconforming discretizations of the Stokes problem; 8.5. The nonconforming Crouzeix
Raviart element; 8.6. Further inf
sup stable finite element pairs; 8.7. Equal order stabilized finite elements; 8.8. Navier
Stokes problem with mixed boundary conditions; 8.9. Time discretization and linearization of the Navier
Stokes problem; 9. Implementation of the finite element method; 9.1. Mesh handling and data structure; 9.2. Numerical integration; 9.3. Sparse matrix storage; 9.4. Assembling of system matrices and load vectors; 9.5. Inclusion of boundary conditions; 9.6. Solution of the algebraic systems; 9.7. Object-oriented C++ programming; Bibliography; Index.
Preface; 1. Sobolev spaces; 1.1. Banach and Hilbert spaces; 1.2. Weak derivatives; 1.3. Sobolev spaces; 2. Elliptic scalar problems; 2.1. A general elliptic problem of second order; 2.2. Weak solution; 2.3. Standard Galerkin method; 2.4. Abstract error estimate; 3. Finite element spaces; 3.1. Simplices and barycentric coordinates; 3.2. Simplicial finite elements and local spaces; 3.3. Construction of finite elements spaces; 3.4. The concept of mapped finite elements: affine mappings; 3.5. Finite elements on rectangular and brick meshes; 3.6. Mapped finite elements: general bijective mappings; 3.7. Mapped Qk finite elements; 3.8. Isoparametric finite elements; 3.9. Further examples of finite elements in C0 and C1; 4. Interpolation and discretization error; 4.1. Transformation formulas; 4.2. Affine equivalent finite elements; 4.3. Canonical interpolation; 4.4. Local and global interpolation error; 4.5. Improved L2 error estimates by duality; 4.6. Interpolation of less smooth functions; 5. Biharmonic equation; 5.1. Deflection of a thin clamped plate; 5.2. Weak formulation of the biharmonic equation; 5.3. Conforming finite element methods; 5.4. Nonconforming finite element methods; 6. Parabolic problems; 6.1. Conservation of energy; 6.2. A general parabolic problem of initial boundary value problems; 6.3. Weak formulation of initial boundary value problems; 6.4. Semidiscretization by finite elements; 6.5. Time discretization; 6.6. Finite elements for high-dimensional parabolic problems; 7. Systems in solid mechanics; 7.1. Linear elasticity; 7.2. Mindlin
Reissner plate; 8. Systems in fluid mechanics; 8.1. Conservation of mass and momentum; 8.2. Weak formulation of the Stokes problem; 8.3. Conforming discretizations of the Stokes problem; 8.4. Nonconforming discretizations of the Stokes problem; 8.5. The nonconforming Crouzeix
Raviart element; 8.6. Further inf
sup stable finite element pairs; 8.7. Equal order stabilized finite elements; 8.8. Navier
Stokes problem with mixed boundary conditions; 8.9. Time discretization and linearization of the Navier
Stokes problem; 9. Implementation of the finite element method; 9.1. Mesh handling and data structure; 9.2. Numerical integration; 9.3. Sparse matrix storage; 9.4. Assembling of system matrices and load vectors; 9.5. Inclusion of boundary conditions; 9.6. Solution of the algebraic systems; 9.7. Object-oriented C++ programming; Bibliography; Index.
Reissner plate; 8. Systems in fluid mechanics; 8.1. Conservation of mass and momentum; 8.2. Weak formulation of the Stokes problem; 8.3. Conforming discretizations of the Stokes problem; 8.4. Nonconforming discretizations of the Stokes problem; 8.5. The nonconforming Crouzeix
Raviart element; 8.6. Further inf
sup stable finite element pairs; 8.7. Equal order stabilized finite elements; 8.8. Navier
Stokes problem with mixed boundary conditions; 8.9. Time discretization and linearization of the Navier
Stokes problem; 9. Implementation of the finite element method; 9.1. Mesh handling and data structure; 9.2. Numerical integration; 9.3. Sparse matrix storage; 9.4. Assembling of system matrices and load vectors; 9.5. Inclusion of boundary conditions; 9.6. Solution of the algebraic systems; 9.7. Object-oriented C++ programming; Bibliography; Index.