- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A 1982 introduction to developments which had taken place in finite group theory related to finite geometries.
Andere Kunden interessierten sich auch für
- M. J. CollinsRepresentations and Characters of Finite Groups68,99 €
- François DigneRepresentations of Finite Groups of Lie Type62,99 €
- John BrayThe Maximal Subgroups of the Low-Dimensional Finite Classical Groups88,99 €
- Theodore G FaticoniDirect Sum Decompositions of Torsion-Free Finite Rank Groups90,99 €
- George Abram MillerTheory and Applications of Finite Groups29,99 €
- S. Cohen / H. Niederreiter (eds.)Finite Fields and Applications74,99 €
- Charles B ThomasRepresentations of Finite and Lie Groups48,99 €
-
-
-
A 1982 introduction to developments which had taken place in finite group theory related to finite geometries.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 342
- Erscheinungstermin: 9. Dezember 2010
- Englisch
- Abmessung: 216mm x 140mm x 20mm
- Gewicht: 483g
- ISBN-13: 9780521183789
- ISBN-10: 0521183782
- Artikelnr.: 33154156
- Verlag: Cambridge University Press
- Seitenzahl: 342
- Erscheinungstermin: 9. Dezember 2010
- Englisch
- Abmessung: 216mm x 140mm x 20mm
- Gewicht: 483g
- ISBN-13: 9780521183789
- ISBN-10: 0521183782
- Artikelnr.: 33154156
Part I. Introduction: 1. Notation and preliminaries; 2. Groups; 3. Algebraic structures; 4. Vector spaces; 5. Geometric structures; Part II. Fundamental Properties of Finite Groups: 1. The Sylow theorems; 2. Direct products and semi-direct products; 3. Normal series; 4. Finite Abelian groups; 5. p-groups; 6. Groups with operators; 7. Group extensions and the theorem of Schur-Zassenhaus; 8. Normal
-complements; 9. Normal p-complements; 10. Representation of finite groups; 11. Frobenius groups; Part III. Fundamental Theory of Permutation Groups: 1. Permutations; 2. Transitivity and intransitivity; 3. Primitivity and imprimitivity; 4. Multiple transitivity; 5. Normal subgroups; 6. Permutation groups of prime degree; 7. Primitive permutation groups; Part IV. Examples - Symmetric Groups and General Linear Groups: 1. Conjugacy classes and composition series of the symmetric and alternating group; 2. Conditions for being a symmetric or alternating group; 3. Subgroups and automorphism groups of S
and A
; 4. Generators and fundamental relations for Sn and An; 5. The structure of general semi-linear groups; 6. Properties of PSL(V) as a permutation group (dim V
3); 7. Symmetric groups and general linear groups of low order; Part V. Finite Projective Geometry: 1. Projective planes and affine planes; 2. Higher-dimensional; projective geometry; 3. Characterization of projective geometries; Part VI. Finite Groups and Finite Geometries: 1. Designs constructed from 2-transitive groups; 2. Characterization of projective transformation; Epilogue; Index.
-complements; 9. Normal p-complements; 10. Representation of finite groups; 11. Frobenius groups; Part III. Fundamental Theory of Permutation Groups: 1. Permutations; 2. Transitivity and intransitivity; 3. Primitivity and imprimitivity; 4. Multiple transitivity; 5. Normal subgroups; 6. Permutation groups of prime degree; 7. Primitive permutation groups; Part IV. Examples - Symmetric Groups and General Linear Groups: 1. Conjugacy classes and composition series of the symmetric and alternating group; 2. Conditions for being a symmetric or alternating group; 3. Subgroups and automorphism groups of S
and A
; 4. Generators and fundamental relations for Sn and An; 5. The structure of general semi-linear groups; 6. Properties of PSL(V) as a permutation group (dim V
3); 7. Symmetric groups and general linear groups of low order; Part V. Finite Projective Geometry: 1. Projective planes and affine planes; 2. Higher-dimensional; projective geometry; 3. Characterization of projective geometries; Part VI. Finite Groups and Finite Geometries: 1. Designs constructed from 2-transitive groups; 2. Characterization of projective transformation; Epilogue; Index.
Part I. Introduction: 1. Notation and preliminaries; 2. Groups; 3. Algebraic structures; 4. Vector spaces; 5. Geometric structures; Part II. Fundamental Properties of Finite Groups: 1. The Sylow theorems; 2. Direct products and semi-direct products; 3. Normal series; 4. Finite Abelian groups; 5. p-groups; 6. Groups with operators; 7. Group extensions and the theorem of Schur-Zassenhaus; 8. Normal
-complements; 9. Normal p-complements; 10. Representation of finite groups; 11. Frobenius groups; Part III. Fundamental Theory of Permutation Groups: 1. Permutations; 2. Transitivity and intransitivity; 3. Primitivity and imprimitivity; 4. Multiple transitivity; 5. Normal subgroups; 6. Permutation groups of prime degree; 7. Primitive permutation groups; Part IV. Examples - Symmetric Groups and General Linear Groups: 1. Conjugacy classes and composition series of the symmetric and alternating group; 2. Conditions for being a symmetric or alternating group; 3. Subgroups and automorphism groups of S
and A
; 4. Generators and fundamental relations for Sn and An; 5. The structure of general semi-linear groups; 6. Properties of PSL(V) as a permutation group (dim V
3); 7. Symmetric groups and general linear groups of low order; Part V. Finite Projective Geometry: 1. Projective planes and affine planes; 2. Higher-dimensional; projective geometry; 3. Characterization of projective geometries; Part VI. Finite Groups and Finite Geometries: 1. Designs constructed from 2-transitive groups; 2. Characterization of projective transformation; Epilogue; Index.
-complements; 9. Normal p-complements; 10. Representation of finite groups; 11. Frobenius groups; Part III. Fundamental Theory of Permutation Groups: 1. Permutations; 2. Transitivity and intransitivity; 3. Primitivity and imprimitivity; 4. Multiple transitivity; 5. Normal subgroups; 6. Permutation groups of prime degree; 7. Primitive permutation groups; Part IV. Examples - Symmetric Groups and General Linear Groups: 1. Conjugacy classes and composition series of the symmetric and alternating group; 2. Conditions for being a symmetric or alternating group; 3. Subgroups and automorphism groups of S
and A
; 4. Generators and fundamental relations for Sn and An; 5. The structure of general semi-linear groups; 6. Properties of PSL(V) as a permutation group (dim V
3); 7. Symmetric groups and general linear groups of low order; Part V. Finite Projective Geometry: 1. Projective planes and affine planes; 2. Higher-dimensional; projective geometry; 3. Characterization of projective geometries; Part VI. Finite Groups and Finite Geometries: 1. Designs constructed from 2-transitive groups; 2. Characterization of projective transformation; Epilogue; Index.