- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialised work by emphasising an understanding of the nature of algebraic structures.
Andere Kunden interessierten sich auch für
- Steven Howard Weintraub (Usa Lehigh Univ)INTRODUCTION TO ABSTRACT ALGEBRA, AN54,99 €
- C. EdwardsDifferential Equations and Linear Algebra, Global Edition106,99 €
- Mildred JohnsonHow to Solve Word Problems in Algebra, 2nd Edition19,99 €
- Mohammed Hichem Mortad (Algeria Univ Of Oran 1)BASIC ABSTRACT ALGEBRA42,99 €
- Joseph A. GallianStudent Solutions Manual for Gallian's Contemporary Abstract Algebra72,99 €
- George HoweMathematics for the practical man explaining simply and quickly all the elements of algebra, geometry, trigonometry, logarithms, coo¿rdinate geometry, calculus with Answers to Problems22,99 €
- Christopher MonahanMust Know High School Algebra, Second Edition16,99 €
-
-
-
Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialised work by emphasising an understanding of the nature of algebraic structures.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Pearson Education Limited
- 7 ed
- Seitenzahl: 464
- Erscheinungstermin: 30. Juli 2013
- Englisch
- Abmessung: 271mm x 219mm x 30mm
- Gewicht: 1242g
- ISBN-13: 9781292024967
- ISBN-10: 1292024968
- Artikelnr.: 49558189
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Pearson Education Limited
- 7 ed
- Seitenzahl: 464
- Erscheinungstermin: 30. Juli 2013
- Englisch
- Abmessung: 271mm x 219mm x 30mm
- Gewicht: 1242g
- ISBN-13: 9781292024967
- ISBN-10: 1292024968
- Artikelnr.: 49558189
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
0. Sets and Relations.
I. GROUPS AND SUBGROUPS.
1. Introduction and Examples.
2. Binary Operations.
3. Isomorphic Binary Structures.
4. Groups.
5. Subgroups.
6. Cyclic Groups.
7. Generators and Cayley Digraphs.
I. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS.
8. Groups of Permutations.
9. Orbits, Cycles, and the Alternating Groups.
10. Cosets and the Theorem of Lagrange.
11. Direct Products and Finitely Generated Abelian Groups.
12. Plane Isometries.
III. HOMOMORPHISMS AND FACTOR GROUPS.
13. Homomorphisms.
14. Factor Groups.
15. Factor-Group Computations and Simple Groups.
16. Group Action on a Set.
17. Applications of G-Sets to Counting.
IV. RINGS AND FIELDS.
18. Rings and Fields.
19. Integral Domains.
20. Fermat's and Euler's Theorems.
21. The Field of Quotients of an Integral Domain.
22. Rings of Polynomials.
23. Factorization of Polynomials over a Field.
24. Noncommutative Examples.
25. Ordered Rings and Fields.
V. IDEALS AND FACTOR RINGS.
26. Homomorphisms and Factor Rings.
27. Prime and Maximal Ideas.
28. Gröbner Bases for Ideals.
VI. EXTENSION FIELDS.
29. Introduction to Extension Fields.
30. Vector Spaces.
31. Algebraic Extensions.
32. Geometric Constructions.
33. Finite Fields.
VII. ADVANCED GROUP THEORY.
34. Isomorphism Theorems.
35. Series of Groups.
36. Sylow Theorems.
37. Applications of the Sylow Theory.
38. Free Abelian Groups.
39. Free Groups.
40. Group Presentations.
VIII.. AUTOMORPHISMS AND GALOIS THEORY.
41. Automorphisms of Fields.
42. The Isomorphism Extension Theorem.
43. Splitting Fields.
44. Separable Extensions.
45. Totally Inseparable Extensions.
46. Galois Theory.
47. Illustrations of Galois Theory.
48. Cyclotomic Extensions.
49. Insolvability of the Quintic.
Appendix: Matrix Algebra.
Notations.
Index.
I. GROUPS AND SUBGROUPS.
1. Introduction and Examples.
2. Binary Operations.
3. Isomorphic Binary Structures.
4. Groups.
5. Subgroups.
6. Cyclic Groups.
7. Generators and Cayley Digraphs.
I. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS.
8. Groups of Permutations.
9. Orbits, Cycles, and the Alternating Groups.
10. Cosets and the Theorem of Lagrange.
11. Direct Products and Finitely Generated Abelian Groups.
12. Plane Isometries.
III. HOMOMORPHISMS AND FACTOR GROUPS.
13. Homomorphisms.
14. Factor Groups.
15. Factor-Group Computations and Simple Groups.
16. Group Action on a Set.
17. Applications of G-Sets to Counting.
IV. RINGS AND FIELDS.
18. Rings and Fields.
19. Integral Domains.
20. Fermat's and Euler's Theorems.
21. The Field of Quotients of an Integral Domain.
22. Rings of Polynomials.
23. Factorization of Polynomials over a Field.
24. Noncommutative Examples.
25. Ordered Rings and Fields.
V. IDEALS AND FACTOR RINGS.
26. Homomorphisms and Factor Rings.
27. Prime and Maximal Ideas.
28. Gröbner Bases for Ideals.
VI. EXTENSION FIELDS.
29. Introduction to Extension Fields.
30. Vector Spaces.
31. Algebraic Extensions.
32. Geometric Constructions.
33. Finite Fields.
VII. ADVANCED GROUP THEORY.
34. Isomorphism Theorems.
35. Series of Groups.
36. Sylow Theorems.
37. Applications of the Sylow Theory.
38. Free Abelian Groups.
39. Free Groups.
40. Group Presentations.
VIII.. AUTOMORPHISMS AND GALOIS THEORY.
41. Automorphisms of Fields.
42. The Isomorphism Extension Theorem.
43. Splitting Fields.
44. Separable Extensions.
45. Totally Inseparable Extensions.
46. Galois Theory.
47. Illustrations of Galois Theory.
48. Cyclotomic Extensions.
49. Insolvability of the Quintic.
Appendix: Matrix Algebra.
Notations.
Index.
0. Sets and Relations.
I. GROUPS AND SUBGROUPS.
1. Introduction and Examples.
2. Binary Operations.
3. Isomorphic Binary Structures.
4. Groups.
5. Subgroups.
6. Cyclic Groups.
7. Generators and Cayley Digraphs.
I. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS.
8. Groups of Permutations.
9. Orbits, Cycles, and the Alternating Groups.
10. Cosets and the Theorem of Lagrange.
11. Direct Products and Finitely Generated Abelian Groups.
12. Plane Isometries.
III. HOMOMORPHISMS AND FACTOR GROUPS.
13. Homomorphisms.
14. Factor Groups.
15. Factor-Group Computations and Simple Groups.
16. Group Action on a Set.
17. Applications of G-Sets to Counting.
IV. RINGS AND FIELDS.
18. Rings and Fields.
19. Integral Domains.
20. Fermat's and Euler's Theorems.
21. The Field of Quotients of an Integral Domain.
22. Rings of Polynomials.
23. Factorization of Polynomials over a Field.
24. Noncommutative Examples.
25. Ordered Rings and Fields.
V. IDEALS AND FACTOR RINGS.
26. Homomorphisms and Factor Rings.
27. Prime and Maximal Ideas.
28. Gröbner Bases for Ideals.
VI. EXTENSION FIELDS.
29. Introduction to Extension Fields.
30. Vector Spaces.
31. Algebraic Extensions.
32. Geometric Constructions.
33. Finite Fields.
VII. ADVANCED GROUP THEORY.
34. Isomorphism Theorems.
35. Series of Groups.
36. Sylow Theorems.
37. Applications of the Sylow Theory.
38. Free Abelian Groups.
39. Free Groups.
40. Group Presentations.
VIII.. AUTOMORPHISMS AND GALOIS THEORY.
41. Automorphisms of Fields.
42. The Isomorphism Extension Theorem.
43. Splitting Fields.
44. Separable Extensions.
45. Totally Inseparable Extensions.
46. Galois Theory.
47. Illustrations of Galois Theory.
48. Cyclotomic Extensions.
49. Insolvability of the Quintic.
Appendix: Matrix Algebra.
Notations.
Index.
I. GROUPS AND SUBGROUPS.
1. Introduction and Examples.
2. Binary Operations.
3. Isomorphic Binary Structures.
4. Groups.
5. Subgroups.
6. Cyclic Groups.
7. Generators and Cayley Digraphs.
I. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS.
8. Groups of Permutations.
9. Orbits, Cycles, and the Alternating Groups.
10. Cosets and the Theorem of Lagrange.
11. Direct Products and Finitely Generated Abelian Groups.
12. Plane Isometries.
III. HOMOMORPHISMS AND FACTOR GROUPS.
13. Homomorphisms.
14. Factor Groups.
15. Factor-Group Computations and Simple Groups.
16. Group Action on a Set.
17. Applications of G-Sets to Counting.
IV. RINGS AND FIELDS.
18. Rings and Fields.
19. Integral Domains.
20. Fermat's and Euler's Theorems.
21. The Field of Quotients of an Integral Domain.
22. Rings of Polynomials.
23. Factorization of Polynomials over a Field.
24. Noncommutative Examples.
25. Ordered Rings and Fields.
V. IDEALS AND FACTOR RINGS.
26. Homomorphisms and Factor Rings.
27. Prime and Maximal Ideas.
28. Gröbner Bases for Ideals.
VI. EXTENSION FIELDS.
29. Introduction to Extension Fields.
30. Vector Spaces.
31. Algebraic Extensions.
32. Geometric Constructions.
33. Finite Fields.
VII. ADVANCED GROUP THEORY.
34. Isomorphism Theorems.
35. Series of Groups.
36. Sylow Theorems.
37. Applications of the Sylow Theory.
38. Free Abelian Groups.
39. Free Groups.
40. Group Presentations.
VIII.. AUTOMORPHISMS AND GALOIS THEORY.
41. Automorphisms of Fields.
42. The Isomorphism Extension Theorem.
43. Splitting Fields.
44. Separable Extensions.
45. Totally Inseparable Extensions.
46. Galois Theory.
47. Illustrations of Galois Theory.
48. Cyclotomic Extensions.
49. Insolvability of the Quintic.
Appendix: Matrix Algebra.
Notations.
Index.