132,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Gebundenes Buch

This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions.
Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation.
Tailored for postgraduate students and researchers seeking to expand
…mehr

Produktbeschreibung
This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions.

Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation.

Tailored for postgraduate students and researchers seeking to expand their understanding of nonparametric statistics, this book will serve as a valuable resource for anyone who wishes to explore the applications of flexible nonparametric techniques.
Autorenporträt
Dr. Hassan Doosti is a senior lecturer in Statistics at Macquarie University, where he also holds the position of Program Director for the Master of Data Science program. With a primary focus on nonparametric curve estimation, Dr. Doosti has made significant contributions to the field, with a publication record of over 50 research papers. His expertise encompasses a wide range of topics, including probability density, quantile density, and regression functions tailored for incomplete and biased samples.