Flexible Supercapacitor Nanoarchitectonics
Herausgegeben:Inamuddin; Ahamed, Mohd Imran; Boddula, Rajender; Altalhi, Tariq
Flexible Supercapacitor Nanoarchitectonics
Herausgegeben:Inamuddin; Ahamed, Mohd Imran; Boddula, Rajender; Altalhi, Tariq
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent…mehr
Andere Kunden interessierten sich auch für
- Konrad SzacilowskiInfochemistry180,99 €
- Nanotechnology in Electronics159,00 €
- Tianyou ZhaiOne-Dimensional Nanostructures202,99 €
- Graphdiyne184,51 €
- Nanostructured Conductive Polymers339,99 €
- History of Nanotechnology201,99 €
- Material-Integrated Intelligent Systems254,99 €
-
-
-
The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons / Wiley-Scrivener
- Artikelnr. des Verlages: 1W119711450
- 1. Auflage
- Seitenzahl: 672
- Erscheinungstermin: 29. Juni 2021
- Englisch
- Abmessung: 221mm x 155mm x 41mm
- Gewicht: 1068g
- ISBN-13: 9781119711452
- ISBN-10: 1119711452
- Artikelnr.: 60548925
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley & Sons / Wiley-Scrivener
- Artikelnr. des Verlages: 1W119711450
- 1. Auflage
- Seitenzahl: 672
- Erscheinungstermin: 29. Juni 2021
- Englisch
- Abmessung: 221mm x 155mm x 41mm
- Gewicht: 1068g
- ISBN-13: 9781119711452
- ISBN-10: 1119711452
- Artikelnr.: 60548925
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers. Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning. Rajender Boddula PhD is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters. Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.
Preface xvii
1 Electrodes for Flexible Integrated Supercapacitors 1
Sajid ur Rehman and Hong Bi
1.1 Introduction and Overview of Supercapacitors 2
1.2 Electrode Materials for Flexible Supercapacitors 4
1.2.1 Carbon Materials 4
1.2.1.1 Activated Carbon 4
1.2.1.2 Carbon Nanotubes 5
1.2.1.3 Graphene 6
1.2.1.4 Carbon Aerogels 8
1.2.1.5 Graphene Hydrogel 8
1.2.2 Conducting Polymers 10
1.2.3 Metal Compounds 13
1.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 14
1.2.3.2 Nickel Oxide (NiO) Electrode Material 15
1.2.3.3 Copper Oxide (CuO) Electrode Material 16
1.2.3.4 Composite Electrode Materials 17
1.3 Device Architecture of Flexible Supercapacitor 18
1.4 Integration of Flexible Supercapacitors 19
1.5 Conclusion 21
References 22
2 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27
Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos
2.1 Introduction 27
2.2 Supercapacitors 29
2.2.1 Electrochemical Supercapacitor 29
2.2.2 Flexible Supercapacitors 30
2.3 Shape Dependent Flexible Electrodes 31
2.3.1 Porous 3D Flexible Electrodes 32
2.3.2 Flexible Paper Electrodes 32
2.3.3 Flexible Fiber Electrodes 33
2.4 Fiber Shape Electrodes (FE/FSC) 34
2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 34
2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 35
2.4.3 Parallel Fiber Shape Electrode/Supercapacitor 36
2.4.4 Twisted Fiber Shape Electrode/Supercapacitor 37
2.4.5 Rolled Fiber Shape Electrode/Supercapacitors 38
2.5 Conclusion 39
References 40
3 Graphene-Based Electrodes for Flexible Supercapacitors 43
Jyoti Raghav, Sapna Raghav and Pallavi Jain
3.1 Introduction 43
3.2 Type of SCs 44
3.2.1 EDLC 44
3.2.2 PCs 45
3.2.3 Flexible Graphene-Based Nano Composites 45
3.3 Fabrication Techniques for the Electrode Materials 46
3.3.1 Electrodeposition 46
3.3.2 Direct Coating (DC) 46
3.3.3 Chemical Vapor Deposition (CVD) 48
3.3.4 Hydrothermal 48
3.4 Substrate Materials for the Flexible SCs 48
3.5 Graphene Nanocomposite-Based Electrode Materials 49
3.5.1 Additives/Graphene Electrodes 49
3.5.2 Binder/Graphene Electrodes 49
3.5.3 Pure Graphene Electrode 50
3.5.4 Conductive Polymers/Graphene Composites Electrode 50
3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 51
3.6 NSs for the Flexible SC 52
3.7 Conclusion 53
Acknowledgment 54
References 54
4 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59
Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed
4.1 Introduction 60
4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 61
4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 62
4.3.1 Preparation of Polymer-Based Electrode Materials 62
4.3.1.1 Polyaniline (PANI) 63
4.3.1.2 Polypyrrole (PPy) 65
4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 66
4.3.2 Electrode Fabrication 69
4.4 Physicochemical Characterization of Flexible Supercapacitors 70
4.4.1 Scanning Electron Microscopy 70
4.4.2 Transmission Electron Microscopy 71
4.4.3 X-Ray Diffraction 73
4.4.4 Surface Area Analysis by BET (Bru
1 Electrodes for Flexible Integrated Supercapacitors 1
Sajid ur Rehman and Hong Bi
1.1 Introduction and Overview of Supercapacitors 2
1.2 Electrode Materials for Flexible Supercapacitors 4
1.2.1 Carbon Materials 4
1.2.1.1 Activated Carbon 4
1.2.1.2 Carbon Nanotubes 5
1.2.1.3 Graphene 6
1.2.1.4 Carbon Aerogels 8
1.2.1.5 Graphene Hydrogel 8
1.2.2 Conducting Polymers 10
1.2.3 Metal Compounds 13
1.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 14
1.2.3.2 Nickel Oxide (NiO) Electrode Material 15
1.2.3.3 Copper Oxide (CuO) Electrode Material 16
1.2.3.4 Composite Electrode Materials 17
1.3 Device Architecture of Flexible Supercapacitor 18
1.4 Integration of Flexible Supercapacitors 19
1.5 Conclusion 21
References 22
2 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27
Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos
2.1 Introduction 27
2.2 Supercapacitors 29
2.2.1 Electrochemical Supercapacitor 29
2.2.2 Flexible Supercapacitors 30
2.3 Shape Dependent Flexible Electrodes 31
2.3.1 Porous 3D Flexible Electrodes 32
2.3.2 Flexible Paper Electrodes 32
2.3.3 Flexible Fiber Electrodes 33
2.4 Fiber Shape Electrodes (FE/FSC) 34
2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 34
2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 35
2.4.3 Parallel Fiber Shape Electrode/Supercapacitor 36
2.4.4 Twisted Fiber Shape Electrode/Supercapacitor 37
2.4.5 Rolled Fiber Shape Electrode/Supercapacitors 38
2.5 Conclusion 39
References 40
3 Graphene-Based Electrodes for Flexible Supercapacitors 43
Jyoti Raghav, Sapna Raghav and Pallavi Jain
3.1 Introduction 43
3.2 Type of SCs 44
3.2.1 EDLC 44
3.2.2 PCs 45
3.2.3 Flexible Graphene-Based Nano Composites 45
3.3 Fabrication Techniques for the Electrode Materials 46
3.3.1 Electrodeposition 46
3.3.2 Direct Coating (DC) 46
3.3.3 Chemical Vapor Deposition (CVD) 48
3.3.4 Hydrothermal 48
3.4 Substrate Materials for the Flexible SCs 48
3.5 Graphene Nanocomposite-Based Electrode Materials 49
3.5.1 Additives/Graphene Electrodes 49
3.5.2 Binder/Graphene Electrodes 49
3.5.3 Pure Graphene Electrode 50
3.5.4 Conductive Polymers/Graphene Composites Electrode 50
3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 51
3.6 NSs for the Flexible SC 52
3.7 Conclusion 53
Acknowledgment 54
References 54
4 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59
Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed
4.1 Introduction 60
4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 61
4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 62
4.3.1 Preparation of Polymer-Based Electrode Materials 62
4.3.1.1 Polyaniline (PANI) 63
4.3.1.2 Polypyrrole (PPy) 65
4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 66
4.3.2 Electrode Fabrication 69
4.4 Physicochemical Characterization of Flexible Supercapacitors 70
4.4.1 Scanning Electron Microscopy 70
4.4.2 Transmission Electron Microscopy 71
4.4.3 X-Ray Diffraction 73
4.4.4 Surface Area Analysis by BET (Bru
Preface xvii
1 Electrodes for Flexible Integrated Supercapacitors 1
Sajid ur Rehman and Hong Bi
1.1 Introduction and Overview of Supercapacitors 2
1.2 Electrode Materials for Flexible Supercapacitors 4
1.2.1 Carbon Materials 4
1.2.1.1 Activated Carbon 4
1.2.1.2 Carbon Nanotubes 5
1.2.1.3 Graphene 6
1.2.1.4 Carbon Aerogels 8
1.2.1.5 Graphene Hydrogel 8
1.2.2 Conducting Polymers 10
1.2.3 Metal Compounds 13
1.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 14
1.2.3.2 Nickel Oxide (NiO) Electrode Material 15
1.2.3.3 Copper Oxide (CuO) Electrode Material 16
1.2.3.4 Composite Electrode Materials 17
1.3 Device Architecture of Flexible Supercapacitor 18
1.4 Integration of Flexible Supercapacitors 19
1.5 Conclusion 21
References 22
2 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27
Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos
2.1 Introduction 27
2.2 Supercapacitors 29
2.2.1 Electrochemical Supercapacitor 29
2.2.2 Flexible Supercapacitors 30
2.3 Shape Dependent Flexible Electrodes 31
2.3.1 Porous 3D Flexible Electrodes 32
2.3.2 Flexible Paper Electrodes 32
2.3.3 Flexible Fiber Electrodes 33
2.4 Fiber Shape Electrodes (FE/FSC) 34
2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 34
2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 35
2.4.3 Parallel Fiber Shape Electrode/Supercapacitor 36
2.4.4 Twisted Fiber Shape Electrode/Supercapacitor 37
2.4.5 Rolled Fiber Shape Electrode/Supercapacitors 38
2.5 Conclusion 39
References 40
3 Graphene-Based Electrodes for Flexible Supercapacitors 43
Jyoti Raghav, Sapna Raghav and Pallavi Jain
3.1 Introduction 43
3.2 Type of SCs 44
3.2.1 EDLC 44
3.2.2 PCs 45
3.2.3 Flexible Graphene-Based Nano Composites 45
3.3 Fabrication Techniques for the Electrode Materials 46
3.3.1 Electrodeposition 46
3.3.2 Direct Coating (DC) 46
3.3.3 Chemical Vapor Deposition (CVD) 48
3.3.4 Hydrothermal 48
3.4 Substrate Materials for the Flexible SCs 48
3.5 Graphene Nanocomposite-Based Electrode Materials 49
3.5.1 Additives/Graphene Electrodes 49
3.5.2 Binder/Graphene Electrodes 49
3.5.3 Pure Graphene Electrode 50
3.5.4 Conductive Polymers/Graphene Composites Electrode 50
3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 51
3.6 NSs for the Flexible SC 52
3.7 Conclusion 53
Acknowledgment 54
References 54
4 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59
Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed
4.1 Introduction 60
4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 61
4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 62
4.3.1 Preparation of Polymer-Based Electrode Materials 62
4.3.1.1 Polyaniline (PANI) 63
4.3.1.2 Polypyrrole (PPy) 65
4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 66
4.3.2 Electrode Fabrication 69
4.4 Physicochemical Characterization of Flexible Supercapacitors 70
4.4.1 Scanning Electron Microscopy 70
4.4.2 Transmission Electron Microscopy 71
4.4.3 X-Ray Diffraction 73
4.4.4 Surface Area Analysis by BET (Bru
1 Electrodes for Flexible Integrated Supercapacitors 1
Sajid ur Rehman and Hong Bi
1.1 Introduction and Overview of Supercapacitors 2
1.2 Electrode Materials for Flexible Supercapacitors 4
1.2.1 Carbon Materials 4
1.2.1.1 Activated Carbon 4
1.2.1.2 Carbon Nanotubes 5
1.2.1.3 Graphene 6
1.2.1.4 Carbon Aerogels 8
1.2.1.5 Graphene Hydrogel 8
1.2.2 Conducting Polymers 10
1.2.3 Metal Compounds 13
1.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 14
1.2.3.2 Nickel Oxide (NiO) Electrode Material 15
1.2.3.3 Copper Oxide (CuO) Electrode Material 16
1.2.3.4 Composite Electrode Materials 17
1.3 Device Architecture of Flexible Supercapacitor 18
1.4 Integration of Flexible Supercapacitors 19
1.5 Conclusion 21
References 22
2 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27
Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos
2.1 Introduction 27
2.2 Supercapacitors 29
2.2.1 Electrochemical Supercapacitor 29
2.2.2 Flexible Supercapacitors 30
2.3 Shape Dependent Flexible Electrodes 31
2.3.1 Porous 3D Flexible Electrodes 32
2.3.2 Flexible Paper Electrodes 32
2.3.3 Flexible Fiber Electrodes 33
2.4 Fiber Shape Electrodes (FE/FSC) 34
2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 34
2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 35
2.4.3 Parallel Fiber Shape Electrode/Supercapacitor 36
2.4.4 Twisted Fiber Shape Electrode/Supercapacitor 37
2.4.5 Rolled Fiber Shape Electrode/Supercapacitors 38
2.5 Conclusion 39
References 40
3 Graphene-Based Electrodes for Flexible Supercapacitors 43
Jyoti Raghav, Sapna Raghav and Pallavi Jain
3.1 Introduction 43
3.2 Type of SCs 44
3.2.1 EDLC 44
3.2.2 PCs 45
3.2.3 Flexible Graphene-Based Nano Composites 45
3.3 Fabrication Techniques for the Electrode Materials 46
3.3.1 Electrodeposition 46
3.3.2 Direct Coating (DC) 46
3.3.3 Chemical Vapor Deposition (CVD) 48
3.3.4 Hydrothermal 48
3.4 Substrate Materials for the Flexible SCs 48
3.5 Graphene Nanocomposite-Based Electrode Materials 49
3.5.1 Additives/Graphene Electrodes 49
3.5.2 Binder/Graphene Electrodes 49
3.5.3 Pure Graphene Electrode 50
3.5.4 Conductive Polymers/Graphene Composites Electrode 50
3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 51
3.6 NSs for the Flexible SC 52
3.7 Conclusion 53
Acknowledgment 54
References 54
4 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59
Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed
4.1 Introduction 60
4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 61
4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 62
4.3.1 Preparation of Polymer-Based Electrode Materials 62
4.3.1.1 Polyaniline (PANI) 63
4.3.1.2 Polypyrrole (PPy) 65
4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 66
4.3.2 Electrode Fabrication 69
4.4 Physicochemical Characterization of Flexible Supercapacitors 70
4.4.1 Scanning Electron Microscopy 70
4.4.2 Transmission Electron Microscopy 71
4.4.3 X-Ray Diffraction 73
4.4.4 Surface Area Analysis by BET (Bru