29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
15 °P sammeln
  • Broschiertes Buch

Soient G H des groupes de Lie, g h leurs algèbres de Lie, et pr : g h la projection canonique. Pour les orbites coadjointes O^G g et O^H h , on note n(O^G, O^H) le nombre de H-orbites dans l'intersection O^G pr-1(O^H), connue par la fonction de multiplicité de Corwin-Greenleaf. Dans l'esprit de la méthode des orbites due à Kirillov et Kostant, on s'attend à ce que n(O^G;O^H) coïncide avec la multiplicité de apparaissant dans la restriction à H d'une représentation unitaire irréductible pi de , où pi est attaché à O^G et est attaché à O^H. Des résultats dans cette direction ont été établis pour…mehr

Produktbeschreibung
Soient G H des groupes de Lie, g h leurs algèbres de Lie, et pr : g h la projection canonique. Pour les orbites coadjointes O^G g et O^H h , on note n(O^G, O^H) le nombre de H-orbites dans l'intersection O^G pr-1(O^H), connue par la fonction de multiplicité de Corwin-Greenleaf. Dans l'esprit de la méthode des orbites due à Kirillov et Kostant, on s'attend à ce que n(O^G;O^H) coïncide avec la multiplicité de apparaissant dans la restriction à H d'une représentation unitaire irréductible pi de , où pi est attaché à O^G et est attaché à O^H. Des résultats dans cette direction ont été établis pour les groupes de Lie nilpotents et certains groupes de Lie résolules. Cependant, très peu de tentatives ont été faites jusqu'à présent pour les groupes de Lie à nilradical co-compact. Notre but dans cette thèse est la description de cette fonction pour certains groupes de Lie à radical nilpotent co-compact, en particulier les produits semi-directs des groupes compacts K avec des groupes de Lie nilpotents N.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Anis Messaoud est un professeur agrégé en Mathématiques à l'Institut Préparatoires aux Etudes d'Ingénieurs, Université de Gafsa (Tunisie), depuis Juillet 2011, et en Mars 2018 il a obtenu le grade de Docteur de l'Université. Ses travaux de recherche portent sur la théorie des représentations des groupes de Lie.