Food Wastes and By-Products
Nutraceutical and Health Potential
Herausgeber: Campos-Vega, Rocio; Vergara-Castaneda, Hayde Azeneth; Oomah, B Dave
Food Wastes and By-Products
Nutraceutical and Health Potential
Herausgeber: Campos-Vega, Rocio; Vergara-Castaneda, Hayde Azeneth; Oomah, B Dave
- Gebundenes Buch
Andere Kunden interessierten sich auch für
- Nutraceutics from Agri-Food By-Products238,99 €
- Functional Polymers in Food Science236,99 €
- James SheridanFood Safety128,99 €
- Advances in Food Science and Nutrition, Volume 2234,99 €
- Functional Polymers in Food Science436,99 €
- Gwenola Yannou-Le BrisEcoDesign and Ecoinnovation in the Food Industries194,99 €
- Functional Polymers in Food Science234,99 €
-
-
-
Produktdetails
- Verlag: Wiley
- Seitenzahl: 480
- Erscheinungstermin: 3. Februar 2020
- Englisch
- Abmessung: 231mm x 160mm x 28mm
- Gewicht: 862g
- ISBN-13: 9781119534105
- ISBN-10: 1119534100
- Artikelnr.: 57828927
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
DR. ROCIO CAMPOS-VEGA is Researcher-Professor, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico, and is part of Mexico's National Research System. DR. B. DAVE OOMAH is a retired research scientist formerly responsible for crop utilization in the National Bioproducts and Bioprocessing Program at Agriculture and Agri-Food Canada. DR. HAYDÉ AZENETH VERGARA-CASTAÑEDA is Researcher-Professor, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico, and is part of Mexico's National Research System.
List of Contributors xv 1 Cereal/Grain By-products 1 Norma Julieta Salazar-López, Maribel Ovando-Martínez, and J. Abraham Domínguez-Avila 1.1 Introduction 1 1.2 Global Production of Cereals and Crop Residues 2 1.3 Cereal Processing and Production of By-products 5 1.3.1 Cereals Morphology and Composition 5 1.3.2 Cereal Grains Processing 6 1.3.2.1 Milling 6 1.3.2.2 Dry Milling 6 1.3.2.3 Wet Milling 6 1.3.2.4 Pearling 7 1.3.2.5 Malting 8 1.3.2.6 Fermentation 8 1.3.2.7 Others 9 1.4 Cereal Grains By-products 9 1.5 Nutraceutical from Cereal/Grain By-products 11 1.5.1 Classification of Nutraceutical Ingredients in Cereal By-products 12 1.5.1.1 Polyphenols 12 1.5.1.2 Carotenoids 16 1.5.1.3 Dietary Fiber 16 1.5.1.4 Prebiotics 17 1.5.1.5 Lipids and Fatty Acids 17 1.5.1.6 Proteins 18 1.5.1.7 Starch 18 1.6 Health Potential of Cereal/Grain By-products 18 1.6.1 Non-Communicable Diseases 18 1.6.1.1 Dyslipidemia and Cardiovascular Effect 18 1.6.1.2 Diabetes 22 1.6.1.3 Anticancer Effect 23 1.7 Current and Future Perspectives 25 1.8 Concluding Remarks 26 References 26 2 Enrichment and Utilization of Thin Stillage By
products 35 Timothy J. Tse and Martin J. T. Reaney 2.1 Introduction 35 2.2 Endemic Bacteria in Wheat
Based Thin Stillage 37 2.3 Protein and Organic Solute Concentration in Thin Stillage 39 2.4 Bacteriocins 43 2.5 Separation and Purification of Bacteriocins 46 2.6 Conclusion 47 References 48 3 Pulse By-products 59 Iván Luzardo-Ocampo, M. Liceth Cuellar-Nuñez, B. Dave Oomah, and Guadalupe Loarca-Piña 3.1 Introduction 59 3.2 Beans By-products 62 3.3 Pea (Pisum sativum) By-products 68 3.4 Chickpea (Cicer arietinum) and Lentil (Lens culinaris) By-products 71 3.5 Lupin (Lupinus) By-products 72 3.6 Other Pulse By-products 74 3.6.1 Pigeon Pea (Cajanus cajan L.) 74 3.6.2 Broad Beans (Vicia faba) 75 3.7 Concluding Remarks 78 References 86 4 Aquafaba, from Food Waste to a Value-Added Product 93 Rana Mustafa and Martin J. T. Reaney 4.1 Introduction 93 4.2 Plant-based Dairy and Eggs Replacement 94 4.3 History of Use and Etymology 95 4.4 Composition of Chickpea and Aquafaba 96 4.5 Anti-nutritional Compounds 98 4.5.1 Protein Anti-nutritional Compounds 100 4.5.2 Nonprotein Anti-nutritional Compounds 100 4.6 Functional Properties 101 4.6.1 Water Holding Capacity and Oil Holding Capacity 102 4.6.2 Emulsion Stabilizer 103 4.6.3 Foaming Properties 104 4.6.4 Gelling and Thickening Properties 107 4.7 Factors Affecting Functional Properties 108 4.7.1 Effect of Cultivars and Genotypes 108 4.7.2 Effect of Processing Methods 110 4.8 Environmental Impact 112 4.9 Value-added Products for the Food and Pharmaceutical Industries 113 4.10 Current and Future Perspectives 115 4.11 Conclusion 116 References 116 5 Brazilian (North and Northeast) Fruit By-Products 127 Larissa Morais Ribeiro DA Silva, Paulo Henrique Machado de Sousa, Luiz Bruno de Sousa Sabino, Giovana Matias do Prado, Lucicleia Barros Vasconcelos Torres, Geraldo Arraes Maia, Raimundo Wilane de Figueiredo, and Nágila Maria Pontes Silva Ricardo 5.1 Introduction 127 5.2 Coproducts' Origin 131 5.3 Types of Waste Processing 131 5.4 Bioactive Compounds 132 5.4.1 Vitamin C 133 5.4.2 Phenolic Compounds 134 5.4.3 Antioxidant Activity in Fruit Coproducts 136 5.4.4 Phytosterols in Fruit Coproducts 141 5.5 Brazilian Fruit By-products from the North and Northeast as a Source of Colorants 141 5.6 Brazilian North and Northeast Fruit By-products as Source of Polysaccharides 144 5.7 Brazilian North and Northeast Fruit By-products as Source of Fibers 145 5.8 Conclusions 149 References 149 6 Health Benefits of Mango By-products 159 Abraham Wall-Medrano, Francisco J. Olivas-Aguirre, Jesus F. Ayala-Zavala, J. Abraham Domínguez-Avila, Gustavo A. Gonzalez-Aguilar, Luz A. Herrera-Cazares, and Marcela Gaytan-Martinez 6.1 Introduction 159 6.2 Mango Agro wastes and Industrial By-products 161 6.2.1 Impacts of Generating Mango Wastes and By-products 162 6.2.1.1 Economic Impact 163 6.2.1.2 Environmental Impact 163 6.2.2 Research and Development (R&D) 164 6.3 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1.1 Macro/Micronutrients 165 6.3.1.2 Dietary Fiber 166 6.3.1.3 Phenolic Compounds 168 6.3.2 Metabolic Fate of Phytochemicals from Mango By-products 170 6.4 Potential Health Benefits of Mango Wastes and By-products 171 6.4.1 Infectious Diseases 171 6.4.1.1 Antibiotic Effect: Planktonic Cells 172 6.4.1.2 Antibiotic Effect: Biofilms 174 6.4.1.3 Prebiotic Effects 176 6.4.2 Noncommunicable Chronic Diseases (NCCDs) 176 6.4.2.1 Obesity 177 6.4.2.2 Diabetes Mellitus 177 6.4.2.3 Cardiovascular Diseases (CVDs) 179 6.4.2.4 Cancer 180 6.4.2.5 Inflammatory Diseases 181 6.4.2.6 Neurological Diseases 182 Acknowledgements 182 References 183 7 Citrus Waste Recovery for Sustainable Nutrition and Health 193 Adriana Maite Fernández-Fernández, Eduardo Dellacassa, Alejandra Medrano-Fernandez, and María Dolores Del Castillo 7.1 Introduction 193 7.2 Citrus By-products: Natural Sources of Health-Promoting Food Ingredients 194 7.2.1 Polyphenols 196 7.2.2 Antioxidant dietary fiber 198 7.3 Health-Promoting Effects 200 7.4 Food Applications 208 7.5 Safety 210 7.6 Conclusions 210 Acknowledgments 210 References 211 8 Vegetable By-products 223 L. Gabriela Espinosa-Alonso, Maribel Valdez-Morales, Xochitl Aparicio-Fernandez, Sergio Medina-Godoy, and Fidel Guevara-Lara 8.1 Introduction 223 8.2 Global and/or by Region Vegetable Food Production and Postharvest Waste 226 8.2.1 Tomato 227 8.2.2 Chili 229 8.2.3 Broccoli and Cauliflower 229 8.2.4 Zucchini 230 8.2.5 Cucumber 230 8.3 Global and/or Regional Vegetable Industrialization and By-Product Generation 231 8.3.1 Tomato 231 8.3.2 Chili 232 8.3.3 Broccoli and Cauliflower 235 8.4 Nutraceutical Composition 236 8.4.1 Tomato 236 8.4.2 Chili 237 8.4.3 Broccoli and Cauliflower 238 8.4.4 Zucchini 239 8.4.5 Cucumber 241 8.5 Proven Nutraceutical In Vitro and In Vivo Bioactivity 242 8.5.1 Tomato 242 8.5.2 Chili 243 8.5.3 Broccoli and Cauliflower 245 8.5.4 Zucchini 245 8.5.4.1 Fruit 245 8.5.4.2 Peel 246 8.5.4.3 Leaves and Stems 247 8.5.5 Cucumber 247 8.5.5.1 Fruit 248 8.5.5.2 Seeds 249 8.5.5.3 Peel 250 8.5.5.4 Leaves and Stems 250 8.6 Methods and Strategies Used by the Food Sector and Other Industries 251 8.7 Commercialization or Transformation in Value-Added Products 253 8.7.1 Tomato 253 8.7.2 Seed Chili 254 8.7.3 Broccoli and Cauliflower 255 8.7.4 Zucchini 256 Acknowledgments 256 References 256 9 Flaxseed By-products 267 B. Dave Oomah 9.1 Introduction 267 9.2 Flaxseed Protein 269 9.2.1 Extraction 269 9.2.2 Composition 272 9.2.3 Amino Acid Profile 273 9.2.4 Product Application 275 9.3 Advanced Processing 276 9.4 Mucilage 277 9.5 Current Trends and Perspectives 278 Acknowledgments 283 References 283 10 Seed Hull Utilization 291 E.E. Martinez-Soberanes, R. Mustafa, Martin J.T. Reaney, and W.J. Zhang 10.1 Introduction 291 10.2 Seed Hull Production 292 10.3 Seed Hull Composition 294 10.3.1 Dietary Fiber (DF) 295 10.3.2 Phytochemicals 297 10.3.3 Protein and Other Minor Components 303 10.4 Dehulling Technology 304 10.4.1 Seed Dehulling 304 10.4.2 Dehulling Technology 305 10.5 Recovery of Compounds from Seed Hull 308 10.5.1 Traditional Solvent Extraction 309 10.5.2 Ultrasonic-Assisted Extraction 310 10.5.3 Microwave-Assisted Extraction 312 10.5.4 Supercritical Fluid Extraction 313 10.5.5 Membrane Separation 314 10.5.6 Seed Hull in Value-Added Food Products 316 10.6 Prospects and Challenges 316 References 317 11 Health Benefits of Spent Coffee Grounds 327 Norma Julieta Salazar-López, Carlos Vladimir López-Rodríguez, Diego Antonio Hernández-Montoya, and Rocio Campos-Vega 11.1 Introduction 327 11.2 Coffea Arabica L. Generalities 328 11.3 Coffee Processing and By-products 329 11.3.1 Coffee Husks 330 11.3.2 Coffee Pulp 330 11.3.3 Coffee Silverskin 331 11.3.4 Spent Coffee Grounds 331 11.4 Physicochemical Characteristics in SCG 331 11.5 Nutritional Properties of SCG 333 11.5.1 Carbohydrates 334 11.5.2 Proteins 336 11.5.3 Lipids 336 11.5.4 Minerals 337 11.5.5 Feed Quality 337 11.6 Nutraceuticals in SCG 338 11.6.1 Dietary Fiber 339 11.6.2 Resistant Starch 339 11.6.3 Antioxidant Compounds 340 11.6.4 Antioxidant Dietary Fiber 341 11.7 Health Benefits of Spent Coffee Grounds 341 11.7.1 Weight Management and Obesity 342 11.7.2 Cardiovascular Diseases 344 11.7.3 Gastrointestinal Diseases 345 11.7.4 Cancer 346 References 348 12 Health Benefits of Silverskin 353 Amaia Iriondo-DeHond, Teresa Herrera, and María Dolores Del Castillo 12.1 Introduction 353 12.2 Improvement of Gastrointestinal Health 358 12.3 Prevention of Metabolic Disorders 359 12.3.1 Obesity and Dyslipemia 360 12.3.2 Diabetes 362 12.4 Improvement of Skin Health 363 12.5 Conclusions 366 Acknowledgements 366 References 367 13 Cocoa By
products 373 Karen Haydeé Nieto Figueroa, Nancy Viridiana Mendoza García, and Rocio Campos-Vega 13.1 Introduction 373 13.2 Cocoa Bean Shell 376 13.2.1 Chemical Composition 376 13.2.2 Nutraceutical Composition 377 13.2.2.1 Dietary Fiber 377 13.2.2.2 Phenolic Compounds 378 13.2.2.3 Methylxanthines 379 13.2.2.4 Other Compounds 380 13.2.3 Applications 381 13.2.3.1 Feedstuff 381 13.2.3.2 Agriculture 382 13.2.3.3 Biofuels 382 13.2.3.4 Adsorbent 382 13.2.3.5 Dye 383 13.2.3.6 Food Products 383 13.2.3.7 Cocoa Shell Tea 383 13.2.3.8 Cocoa Hulls Polyphenols as a Functional Ingredient for Bakery Applications 383 13.2.3.9 BiöRecyclable Paper Packaging 384 13.2.3.10 Cocoa Shell Extracts 384 13.3 Cocoa Pod Husk 386 13.3.1 Chemical Composition 387 13.3.2 Drying Methods 387 13.3.3 Nutraceutical Composition 388 13.3.3.1 Dietary Fiber 388 13.3.3.2 Antioxidants 390 13.3.3.3 Theobromine 391 13.3.3.4 Other Compounds 392 13.3.4 Applications 393 13.3.4.1 Animal Feed 393 13.3.4.2 Soap Making 394 13.3.4.3 Activated Carbon 394 13.3.4.4 Fertilizer and Soil Organic Matter 394 13.3.4.5 Paper Making 395 13.3.4.6 Biofuels and Chemical Industry 395 13.3.4.7 Gums 396 13.3.4.8 Source of Enzymes 396 13.4 Cocoa Mucilage/Pulp/Sweating 396 13.4.1 Chemical Composition 397 13.4.2 Nutraceutical Composition 398 13.4.2.1 Dietary Fiber 398 13.4.2.2 Phenolic Content 398 13.4.3 Applications 399 13.4.3.1 Cocoa Juice 399 13.4.3.2 Cocoa Alcoholic Products 399 13.4.3.3 Pectin 400 13.4.3.4 Marmalade 400 13.4.3.5 Cocoa Jelly 401 13.4.3.6 Other Products 401 13.5 Technological Properties of Cocoa By
products 402 13.5.1 Water (WHC)
and Oil (OHC)
Holding and Swelling Capacities (SWC) 402 13.6 Concluding Remarks 402 References 403 14 Emerging and Potential Bio-Applications of Agro-Industrial By-products Through Implementation of Nanobiotechnology 413 Hayde Azeneth Vergara-Castañeda, Gabriel Luna-Bárcenas, and Héctor Pool 14.1 Introduction 413 14.2 Green Synthesis of Metallic Nanoparticles Mediated by Agro-Industrial Wastes 414 14.2.1 Gold Nanoparticles 417 14.2.2 Silver Nanoparticles 419 14.2.3 Quantum Dots 422 14.3 Agro-Industrial Wastes as Platforms for Biofunctional Nanocomposite Production 425 14.4 Nano-Drug Delivery Systems for Encapsulation, Protection, and Controlled Release of Bioactive Agents Extracted from Agro-Industrial Wastes 431 14.5 Concluding Remarks 435 References 436 Index 445
products 35 Timothy J. Tse and Martin J. T. Reaney 2.1 Introduction 35 2.2 Endemic Bacteria in Wheat
Based Thin Stillage 37 2.3 Protein and Organic Solute Concentration in Thin Stillage 39 2.4 Bacteriocins 43 2.5 Separation and Purification of Bacteriocins 46 2.6 Conclusion 47 References 48 3 Pulse By-products 59 Iván Luzardo-Ocampo, M. Liceth Cuellar-Nuñez, B. Dave Oomah, and Guadalupe Loarca-Piña 3.1 Introduction 59 3.2 Beans By-products 62 3.3 Pea (Pisum sativum) By-products 68 3.4 Chickpea (Cicer arietinum) and Lentil (Lens culinaris) By-products 71 3.5 Lupin (Lupinus) By-products 72 3.6 Other Pulse By-products 74 3.6.1 Pigeon Pea (Cajanus cajan L.) 74 3.6.2 Broad Beans (Vicia faba) 75 3.7 Concluding Remarks 78 References 86 4 Aquafaba, from Food Waste to a Value-Added Product 93 Rana Mustafa and Martin J. T. Reaney 4.1 Introduction 93 4.2 Plant-based Dairy and Eggs Replacement 94 4.3 History of Use and Etymology 95 4.4 Composition of Chickpea and Aquafaba 96 4.5 Anti-nutritional Compounds 98 4.5.1 Protein Anti-nutritional Compounds 100 4.5.2 Nonprotein Anti-nutritional Compounds 100 4.6 Functional Properties 101 4.6.1 Water Holding Capacity and Oil Holding Capacity 102 4.6.2 Emulsion Stabilizer 103 4.6.3 Foaming Properties 104 4.6.4 Gelling and Thickening Properties 107 4.7 Factors Affecting Functional Properties 108 4.7.1 Effect of Cultivars and Genotypes 108 4.7.2 Effect of Processing Methods 110 4.8 Environmental Impact 112 4.9 Value-added Products for the Food and Pharmaceutical Industries 113 4.10 Current and Future Perspectives 115 4.11 Conclusion 116 References 116 5 Brazilian (North and Northeast) Fruit By-Products 127 Larissa Morais Ribeiro DA Silva, Paulo Henrique Machado de Sousa, Luiz Bruno de Sousa Sabino, Giovana Matias do Prado, Lucicleia Barros Vasconcelos Torres, Geraldo Arraes Maia, Raimundo Wilane de Figueiredo, and Nágila Maria Pontes Silva Ricardo 5.1 Introduction 127 5.2 Coproducts' Origin 131 5.3 Types of Waste Processing 131 5.4 Bioactive Compounds 132 5.4.1 Vitamin C 133 5.4.2 Phenolic Compounds 134 5.4.3 Antioxidant Activity in Fruit Coproducts 136 5.4.4 Phytosterols in Fruit Coproducts 141 5.5 Brazilian Fruit By-products from the North and Northeast as a Source of Colorants 141 5.6 Brazilian North and Northeast Fruit By-products as Source of Polysaccharides 144 5.7 Brazilian North and Northeast Fruit By-products as Source of Fibers 145 5.8 Conclusions 149 References 149 6 Health Benefits of Mango By-products 159 Abraham Wall-Medrano, Francisco J. Olivas-Aguirre, Jesus F. Ayala-Zavala, J. Abraham Domínguez-Avila, Gustavo A. Gonzalez-Aguilar, Luz A. Herrera-Cazares, and Marcela Gaytan-Martinez 6.1 Introduction 159 6.2 Mango Agro wastes and Industrial By-products 161 6.2.1 Impacts of Generating Mango Wastes and By-products 162 6.2.1.1 Economic Impact 163 6.2.1.2 Environmental Impact 163 6.2.2 Research and Development (R&D) 164 6.3 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1.1 Macro/Micronutrients 165 6.3.1.2 Dietary Fiber 166 6.3.1.3 Phenolic Compounds 168 6.3.2 Metabolic Fate of Phytochemicals from Mango By-products 170 6.4 Potential Health Benefits of Mango Wastes and By-products 171 6.4.1 Infectious Diseases 171 6.4.1.1 Antibiotic Effect: Planktonic Cells 172 6.4.1.2 Antibiotic Effect: Biofilms 174 6.4.1.3 Prebiotic Effects 176 6.4.2 Noncommunicable Chronic Diseases (NCCDs) 176 6.4.2.1 Obesity 177 6.4.2.2 Diabetes Mellitus 177 6.4.2.3 Cardiovascular Diseases (CVDs) 179 6.4.2.4 Cancer 180 6.4.2.5 Inflammatory Diseases 181 6.4.2.6 Neurological Diseases 182 Acknowledgements 182 References 183 7 Citrus Waste Recovery for Sustainable Nutrition and Health 193 Adriana Maite Fernández-Fernández, Eduardo Dellacassa, Alejandra Medrano-Fernandez, and María Dolores Del Castillo 7.1 Introduction 193 7.2 Citrus By-products: Natural Sources of Health-Promoting Food Ingredients 194 7.2.1 Polyphenols 196 7.2.2 Antioxidant dietary fiber 198 7.3 Health-Promoting Effects 200 7.4 Food Applications 208 7.5 Safety 210 7.6 Conclusions 210 Acknowledgments 210 References 211 8 Vegetable By-products 223 L. Gabriela Espinosa-Alonso, Maribel Valdez-Morales, Xochitl Aparicio-Fernandez, Sergio Medina-Godoy, and Fidel Guevara-Lara 8.1 Introduction 223 8.2 Global and/or by Region Vegetable Food Production and Postharvest Waste 226 8.2.1 Tomato 227 8.2.2 Chili 229 8.2.3 Broccoli and Cauliflower 229 8.2.4 Zucchini 230 8.2.5 Cucumber 230 8.3 Global and/or Regional Vegetable Industrialization and By-Product Generation 231 8.3.1 Tomato 231 8.3.2 Chili 232 8.3.3 Broccoli and Cauliflower 235 8.4 Nutraceutical Composition 236 8.4.1 Tomato 236 8.4.2 Chili 237 8.4.3 Broccoli and Cauliflower 238 8.4.4 Zucchini 239 8.4.5 Cucumber 241 8.5 Proven Nutraceutical In Vitro and In Vivo Bioactivity 242 8.5.1 Tomato 242 8.5.2 Chili 243 8.5.3 Broccoli and Cauliflower 245 8.5.4 Zucchini 245 8.5.4.1 Fruit 245 8.5.4.2 Peel 246 8.5.4.3 Leaves and Stems 247 8.5.5 Cucumber 247 8.5.5.1 Fruit 248 8.5.5.2 Seeds 249 8.5.5.3 Peel 250 8.5.5.4 Leaves and Stems 250 8.6 Methods and Strategies Used by the Food Sector and Other Industries 251 8.7 Commercialization or Transformation in Value-Added Products 253 8.7.1 Tomato 253 8.7.2 Seed Chili 254 8.7.3 Broccoli and Cauliflower 255 8.7.4 Zucchini 256 Acknowledgments 256 References 256 9 Flaxseed By-products 267 B. Dave Oomah 9.1 Introduction 267 9.2 Flaxseed Protein 269 9.2.1 Extraction 269 9.2.2 Composition 272 9.2.3 Amino Acid Profile 273 9.2.4 Product Application 275 9.3 Advanced Processing 276 9.4 Mucilage 277 9.5 Current Trends and Perspectives 278 Acknowledgments 283 References 283 10 Seed Hull Utilization 291 E.E. Martinez-Soberanes, R. Mustafa, Martin J.T. Reaney, and W.J. Zhang 10.1 Introduction 291 10.2 Seed Hull Production 292 10.3 Seed Hull Composition 294 10.3.1 Dietary Fiber (DF) 295 10.3.2 Phytochemicals 297 10.3.3 Protein and Other Minor Components 303 10.4 Dehulling Technology 304 10.4.1 Seed Dehulling 304 10.4.2 Dehulling Technology 305 10.5 Recovery of Compounds from Seed Hull 308 10.5.1 Traditional Solvent Extraction 309 10.5.2 Ultrasonic-Assisted Extraction 310 10.5.3 Microwave-Assisted Extraction 312 10.5.4 Supercritical Fluid Extraction 313 10.5.5 Membrane Separation 314 10.5.6 Seed Hull in Value-Added Food Products 316 10.6 Prospects and Challenges 316 References 317 11 Health Benefits of Spent Coffee Grounds 327 Norma Julieta Salazar-López, Carlos Vladimir López-Rodríguez, Diego Antonio Hernández-Montoya, and Rocio Campos-Vega 11.1 Introduction 327 11.2 Coffea Arabica L. Generalities 328 11.3 Coffee Processing and By-products 329 11.3.1 Coffee Husks 330 11.3.2 Coffee Pulp 330 11.3.3 Coffee Silverskin 331 11.3.4 Spent Coffee Grounds 331 11.4 Physicochemical Characteristics in SCG 331 11.5 Nutritional Properties of SCG 333 11.5.1 Carbohydrates 334 11.5.2 Proteins 336 11.5.3 Lipids 336 11.5.4 Minerals 337 11.5.5 Feed Quality 337 11.6 Nutraceuticals in SCG 338 11.6.1 Dietary Fiber 339 11.6.2 Resistant Starch 339 11.6.3 Antioxidant Compounds 340 11.6.4 Antioxidant Dietary Fiber 341 11.7 Health Benefits of Spent Coffee Grounds 341 11.7.1 Weight Management and Obesity 342 11.7.2 Cardiovascular Diseases 344 11.7.3 Gastrointestinal Diseases 345 11.7.4 Cancer 346 References 348 12 Health Benefits of Silverskin 353 Amaia Iriondo-DeHond, Teresa Herrera, and María Dolores Del Castillo 12.1 Introduction 353 12.2 Improvement of Gastrointestinal Health 358 12.3 Prevention of Metabolic Disorders 359 12.3.1 Obesity and Dyslipemia 360 12.3.2 Diabetes 362 12.4 Improvement of Skin Health 363 12.5 Conclusions 366 Acknowledgements 366 References 367 13 Cocoa By
products 373 Karen Haydeé Nieto Figueroa, Nancy Viridiana Mendoza García, and Rocio Campos-Vega 13.1 Introduction 373 13.2 Cocoa Bean Shell 376 13.2.1 Chemical Composition 376 13.2.2 Nutraceutical Composition 377 13.2.2.1 Dietary Fiber 377 13.2.2.2 Phenolic Compounds 378 13.2.2.3 Methylxanthines 379 13.2.2.4 Other Compounds 380 13.2.3 Applications 381 13.2.3.1 Feedstuff 381 13.2.3.2 Agriculture 382 13.2.3.3 Biofuels 382 13.2.3.4 Adsorbent 382 13.2.3.5 Dye 383 13.2.3.6 Food Products 383 13.2.3.7 Cocoa Shell Tea 383 13.2.3.8 Cocoa Hulls Polyphenols as a Functional Ingredient for Bakery Applications 383 13.2.3.9 BiöRecyclable Paper Packaging 384 13.2.3.10 Cocoa Shell Extracts 384 13.3 Cocoa Pod Husk 386 13.3.1 Chemical Composition 387 13.3.2 Drying Methods 387 13.3.3 Nutraceutical Composition 388 13.3.3.1 Dietary Fiber 388 13.3.3.2 Antioxidants 390 13.3.3.3 Theobromine 391 13.3.3.4 Other Compounds 392 13.3.4 Applications 393 13.3.4.1 Animal Feed 393 13.3.4.2 Soap Making 394 13.3.4.3 Activated Carbon 394 13.3.4.4 Fertilizer and Soil Organic Matter 394 13.3.4.5 Paper Making 395 13.3.4.6 Biofuels and Chemical Industry 395 13.3.4.7 Gums 396 13.3.4.8 Source of Enzymes 396 13.4 Cocoa Mucilage/Pulp/Sweating 396 13.4.1 Chemical Composition 397 13.4.2 Nutraceutical Composition 398 13.4.2.1 Dietary Fiber 398 13.4.2.2 Phenolic Content 398 13.4.3 Applications 399 13.4.3.1 Cocoa Juice 399 13.4.3.2 Cocoa Alcoholic Products 399 13.4.3.3 Pectin 400 13.4.3.4 Marmalade 400 13.4.3.5 Cocoa Jelly 401 13.4.3.6 Other Products 401 13.5 Technological Properties of Cocoa By
products 402 13.5.1 Water (WHC)
and Oil (OHC)
Holding and Swelling Capacities (SWC) 402 13.6 Concluding Remarks 402 References 403 14 Emerging and Potential Bio-Applications of Agro-Industrial By-products Through Implementation of Nanobiotechnology 413 Hayde Azeneth Vergara-Castañeda, Gabriel Luna-Bárcenas, and Héctor Pool 14.1 Introduction 413 14.2 Green Synthesis of Metallic Nanoparticles Mediated by Agro-Industrial Wastes 414 14.2.1 Gold Nanoparticles 417 14.2.2 Silver Nanoparticles 419 14.2.3 Quantum Dots 422 14.3 Agro-Industrial Wastes as Platforms for Biofunctional Nanocomposite Production 425 14.4 Nano-Drug Delivery Systems for Encapsulation, Protection, and Controlled Release of Bioactive Agents Extracted from Agro-Industrial Wastes 431 14.5 Concluding Remarks 435 References 436 Index 445
List of Contributors xv 1 Cereal/Grain By-products 1 Norma Julieta Salazar-López, Maribel Ovando-Martínez, and J. Abraham Domínguez-Avila 1.1 Introduction 1 1.2 Global Production of Cereals and Crop Residues 2 1.3 Cereal Processing and Production of By-products 5 1.3.1 Cereals Morphology and Composition 5 1.3.2 Cereal Grains Processing 6 1.3.2.1 Milling 6 1.3.2.2 Dry Milling 6 1.3.2.3 Wet Milling 6 1.3.2.4 Pearling 7 1.3.2.5 Malting 8 1.3.2.6 Fermentation 8 1.3.2.7 Others 9 1.4 Cereal Grains By-products 9 1.5 Nutraceutical from Cereal/Grain By-products 11 1.5.1 Classification of Nutraceutical Ingredients in Cereal By-products 12 1.5.1.1 Polyphenols 12 1.5.1.2 Carotenoids 16 1.5.1.3 Dietary Fiber 16 1.5.1.4 Prebiotics 17 1.5.1.5 Lipids and Fatty Acids 17 1.5.1.6 Proteins 18 1.5.1.7 Starch 18 1.6 Health Potential of Cereal/Grain By-products 18 1.6.1 Non-Communicable Diseases 18 1.6.1.1 Dyslipidemia and Cardiovascular Effect 18 1.6.1.2 Diabetes 22 1.6.1.3 Anticancer Effect 23 1.7 Current and Future Perspectives 25 1.8 Concluding Remarks 26 References 26 2 Enrichment and Utilization of Thin Stillage By
products 35 Timothy J. Tse and Martin J. T. Reaney 2.1 Introduction 35 2.2 Endemic Bacteria in Wheat
Based Thin Stillage 37 2.3 Protein and Organic Solute Concentration in Thin Stillage 39 2.4 Bacteriocins 43 2.5 Separation and Purification of Bacteriocins 46 2.6 Conclusion 47 References 48 3 Pulse By-products 59 Iván Luzardo-Ocampo, M. Liceth Cuellar-Nuñez, B. Dave Oomah, and Guadalupe Loarca-Piña 3.1 Introduction 59 3.2 Beans By-products 62 3.3 Pea (Pisum sativum) By-products 68 3.4 Chickpea (Cicer arietinum) and Lentil (Lens culinaris) By-products 71 3.5 Lupin (Lupinus) By-products 72 3.6 Other Pulse By-products 74 3.6.1 Pigeon Pea (Cajanus cajan L.) 74 3.6.2 Broad Beans (Vicia faba) 75 3.7 Concluding Remarks 78 References 86 4 Aquafaba, from Food Waste to a Value-Added Product 93 Rana Mustafa and Martin J. T. Reaney 4.1 Introduction 93 4.2 Plant-based Dairy and Eggs Replacement 94 4.3 History of Use and Etymology 95 4.4 Composition of Chickpea and Aquafaba 96 4.5 Anti-nutritional Compounds 98 4.5.1 Protein Anti-nutritional Compounds 100 4.5.2 Nonprotein Anti-nutritional Compounds 100 4.6 Functional Properties 101 4.6.1 Water Holding Capacity and Oil Holding Capacity 102 4.6.2 Emulsion Stabilizer 103 4.6.3 Foaming Properties 104 4.6.4 Gelling and Thickening Properties 107 4.7 Factors Affecting Functional Properties 108 4.7.1 Effect of Cultivars and Genotypes 108 4.7.2 Effect of Processing Methods 110 4.8 Environmental Impact 112 4.9 Value-added Products for the Food and Pharmaceutical Industries 113 4.10 Current and Future Perspectives 115 4.11 Conclusion 116 References 116 5 Brazilian (North and Northeast) Fruit By-Products 127 Larissa Morais Ribeiro DA Silva, Paulo Henrique Machado de Sousa, Luiz Bruno de Sousa Sabino, Giovana Matias do Prado, Lucicleia Barros Vasconcelos Torres, Geraldo Arraes Maia, Raimundo Wilane de Figueiredo, and Nágila Maria Pontes Silva Ricardo 5.1 Introduction 127 5.2 Coproducts' Origin 131 5.3 Types of Waste Processing 131 5.4 Bioactive Compounds 132 5.4.1 Vitamin C 133 5.4.2 Phenolic Compounds 134 5.4.3 Antioxidant Activity in Fruit Coproducts 136 5.4.4 Phytosterols in Fruit Coproducts 141 5.5 Brazilian Fruit By-products from the North and Northeast as a Source of Colorants 141 5.6 Brazilian North and Northeast Fruit By-products as Source of Polysaccharides 144 5.7 Brazilian North and Northeast Fruit By-products as Source of Fibers 145 5.8 Conclusions 149 References 149 6 Health Benefits of Mango By-products 159 Abraham Wall-Medrano, Francisco J. Olivas-Aguirre, Jesus F. Ayala-Zavala, J. Abraham Domínguez-Avila, Gustavo A. Gonzalez-Aguilar, Luz A. Herrera-Cazares, and Marcela Gaytan-Martinez 6.1 Introduction 159 6.2 Mango Agro wastes and Industrial By-products 161 6.2.1 Impacts of Generating Mango Wastes and By-products 162 6.2.1.1 Economic Impact 163 6.2.1.2 Environmental Impact 163 6.2.2 Research and Development (R&D) 164 6.3 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1.1 Macro/Micronutrients 165 6.3.1.2 Dietary Fiber 166 6.3.1.3 Phenolic Compounds 168 6.3.2 Metabolic Fate of Phytochemicals from Mango By-products 170 6.4 Potential Health Benefits of Mango Wastes and By-products 171 6.4.1 Infectious Diseases 171 6.4.1.1 Antibiotic Effect: Planktonic Cells 172 6.4.1.2 Antibiotic Effect: Biofilms 174 6.4.1.3 Prebiotic Effects 176 6.4.2 Noncommunicable Chronic Diseases (NCCDs) 176 6.4.2.1 Obesity 177 6.4.2.2 Diabetes Mellitus 177 6.4.2.3 Cardiovascular Diseases (CVDs) 179 6.4.2.4 Cancer 180 6.4.2.5 Inflammatory Diseases 181 6.4.2.6 Neurological Diseases 182 Acknowledgements 182 References 183 7 Citrus Waste Recovery for Sustainable Nutrition and Health 193 Adriana Maite Fernández-Fernández, Eduardo Dellacassa, Alejandra Medrano-Fernandez, and María Dolores Del Castillo 7.1 Introduction 193 7.2 Citrus By-products: Natural Sources of Health-Promoting Food Ingredients 194 7.2.1 Polyphenols 196 7.2.2 Antioxidant dietary fiber 198 7.3 Health-Promoting Effects 200 7.4 Food Applications 208 7.5 Safety 210 7.6 Conclusions 210 Acknowledgments 210 References 211 8 Vegetable By-products 223 L. Gabriela Espinosa-Alonso, Maribel Valdez-Morales, Xochitl Aparicio-Fernandez, Sergio Medina-Godoy, and Fidel Guevara-Lara 8.1 Introduction 223 8.2 Global and/or by Region Vegetable Food Production and Postharvest Waste 226 8.2.1 Tomato 227 8.2.2 Chili 229 8.2.3 Broccoli and Cauliflower 229 8.2.4 Zucchini 230 8.2.5 Cucumber 230 8.3 Global and/or Regional Vegetable Industrialization and By-Product Generation 231 8.3.1 Tomato 231 8.3.2 Chili 232 8.3.3 Broccoli and Cauliflower 235 8.4 Nutraceutical Composition 236 8.4.1 Tomato 236 8.4.2 Chili 237 8.4.3 Broccoli and Cauliflower 238 8.4.4 Zucchini 239 8.4.5 Cucumber 241 8.5 Proven Nutraceutical In Vitro and In Vivo Bioactivity 242 8.5.1 Tomato 242 8.5.2 Chili 243 8.5.3 Broccoli and Cauliflower 245 8.5.4 Zucchini 245 8.5.4.1 Fruit 245 8.5.4.2 Peel 246 8.5.4.3 Leaves and Stems 247 8.5.5 Cucumber 247 8.5.5.1 Fruit 248 8.5.5.2 Seeds 249 8.5.5.3 Peel 250 8.5.5.4 Leaves and Stems 250 8.6 Methods and Strategies Used by the Food Sector and Other Industries 251 8.7 Commercialization or Transformation in Value-Added Products 253 8.7.1 Tomato 253 8.7.2 Seed Chili 254 8.7.3 Broccoli and Cauliflower 255 8.7.4 Zucchini 256 Acknowledgments 256 References 256 9 Flaxseed By-products 267 B. Dave Oomah 9.1 Introduction 267 9.2 Flaxseed Protein 269 9.2.1 Extraction 269 9.2.2 Composition 272 9.2.3 Amino Acid Profile 273 9.2.4 Product Application 275 9.3 Advanced Processing 276 9.4 Mucilage 277 9.5 Current Trends and Perspectives 278 Acknowledgments 283 References 283 10 Seed Hull Utilization 291 E.E. Martinez-Soberanes, R. Mustafa, Martin J.T. Reaney, and W.J. Zhang 10.1 Introduction 291 10.2 Seed Hull Production 292 10.3 Seed Hull Composition 294 10.3.1 Dietary Fiber (DF) 295 10.3.2 Phytochemicals 297 10.3.3 Protein and Other Minor Components 303 10.4 Dehulling Technology 304 10.4.1 Seed Dehulling 304 10.4.2 Dehulling Technology 305 10.5 Recovery of Compounds from Seed Hull 308 10.5.1 Traditional Solvent Extraction 309 10.5.2 Ultrasonic-Assisted Extraction 310 10.5.3 Microwave-Assisted Extraction 312 10.5.4 Supercritical Fluid Extraction 313 10.5.5 Membrane Separation 314 10.5.6 Seed Hull in Value-Added Food Products 316 10.6 Prospects and Challenges 316 References 317 11 Health Benefits of Spent Coffee Grounds 327 Norma Julieta Salazar-López, Carlos Vladimir López-Rodríguez, Diego Antonio Hernández-Montoya, and Rocio Campos-Vega 11.1 Introduction 327 11.2 Coffea Arabica L. Generalities 328 11.3 Coffee Processing and By-products 329 11.3.1 Coffee Husks 330 11.3.2 Coffee Pulp 330 11.3.3 Coffee Silverskin 331 11.3.4 Spent Coffee Grounds 331 11.4 Physicochemical Characteristics in SCG 331 11.5 Nutritional Properties of SCG 333 11.5.1 Carbohydrates 334 11.5.2 Proteins 336 11.5.3 Lipids 336 11.5.4 Minerals 337 11.5.5 Feed Quality 337 11.6 Nutraceuticals in SCG 338 11.6.1 Dietary Fiber 339 11.6.2 Resistant Starch 339 11.6.3 Antioxidant Compounds 340 11.6.4 Antioxidant Dietary Fiber 341 11.7 Health Benefits of Spent Coffee Grounds 341 11.7.1 Weight Management and Obesity 342 11.7.2 Cardiovascular Diseases 344 11.7.3 Gastrointestinal Diseases 345 11.7.4 Cancer 346 References 348 12 Health Benefits of Silverskin 353 Amaia Iriondo-DeHond, Teresa Herrera, and María Dolores Del Castillo 12.1 Introduction 353 12.2 Improvement of Gastrointestinal Health 358 12.3 Prevention of Metabolic Disorders 359 12.3.1 Obesity and Dyslipemia 360 12.3.2 Diabetes 362 12.4 Improvement of Skin Health 363 12.5 Conclusions 366 Acknowledgements 366 References 367 13 Cocoa By
products 373 Karen Haydeé Nieto Figueroa, Nancy Viridiana Mendoza García, and Rocio Campos-Vega 13.1 Introduction 373 13.2 Cocoa Bean Shell 376 13.2.1 Chemical Composition 376 13.2.2 Nutraceutical Composition 377 13.2.2.1 Dietary Fiber 377 13.2.2.2 Phenolic Compounds 378 13.2.2.3 Methylxanthines 379 13.2.2.4 Other Compounds 380 13.2.3 Applications 381 13.2.3.1 Feedstuff 381 13.2.3.2 Agriculture 382 13.2.3.3 Biofuels 382 13.2.3.4 Adsorbent 382 13.2.3.5 Dye 383 13.2.3.6 Food Products 383 13.2.3.7 Cocoa Shell Tea 383 13.2.3.8 Cocoa Hulls Polyphenols as a Functional Ingredient for Bakery Applications 383 13.2.3.9 BiöRecyclable Paper Packaging 384 13.2.3.10 Cocoa Shell Extracts 384 13.3 Cocoa Pod Husk 386 13.3.1 Chemical Composition 387 13.3.2 Drying Methods 387 13.3.3 Nutraceutical Composition 388 13.3.3.1 Dietary Fiber 388 13.3.3.2 Antioxidants 390 13.3.3.3 Theobromine 391 13.3.3.4 Other Compounds 392 13.3.4 Applications 393 13.3.4.1 Animal Feed 393 13.3.4.2 Soap Making 394 13.3.4.3 Activated Carbon 394 13.3.4.4 Fertilizer and Soil Organic Matter 394 13.3.4.5 Paper Making 395 13.3.4.6 Biofuels and Chemical Industry 395 13.3.4.7 Gums 396 13.3.4.8 Source of Enzymes 396 13.4 Cocoa Mucilage/Pulp/Sweating 396 13.4.1 Chemical Composition 397 13.4.2 Nutraceutical Composition 398 13.4.2.1 Dietary Fiber 398 13.4.2.2 Phenolic Content 398 13.4.3 Applications 399 13.4.3.1 Cocoa Juice 399 13.4.3.2 Cocoa Alcoholic Products 399 13.4.3.3 Pectin 400 13.4.3.4 Marmalade 400 13.4.3.5 Cocoa Jelly 401 13.4.3.6 Other Products 401 13.5 Technological Properties of Cocoa By
products 402 13.5.1 Water (WHC)
and Oil (OHC)
Holding and Swelling Capacities (SWC) 402 13.6 Concluding Remarks 402 References 403 14 Emerging and Potential Bio-Applications of Agro-Industrial By-products Through Implementation of Nanobiotechnology 413 Hayde Azeneth Vergara-Castañeda, Gabriel Luna-Bárcenas, and Héctor Pool 14.1 Introduction 413 14.2 Green Synthesis of Metallic Nanoparticles Mediated by Agro-Industrial Wastes 414 14.2.1 Gold Nanoparticles 417 14.2.2 Silver Nanoparticles 419 14.2.3 Quantum Dots 422 14.3 Agro-Industrial Wastes as Platforms for Biofunctional Nanocomposite Production 425 14.4 Nano-Drug Delivery Systems for Encapsulation, Protection, and Controlled Release of Bioactive Agents Extracted from Agro-Industrial Wastes 431 14.5 Concluding Remarks 435 References 436 Index 445
products 35 Timothy J. Tse and Martin J. T. Reaney 2.1 Introduction 35 2.2 Endemic Bacteria in Wheat
Based Thin Stillage 37 2.3 Protein and Organic Solute Concentration in Thin Stillage 39 2.4 Bacteriocins 43 2.5 Separation and Purification of Bacteriocins 46 2.6 Conclusion 47 References 48 3 Pulse By-products 59 Iván Luzardo-Ocampo, M. Liceth Cuellar-Nuñez, B. Dave Oomah, and Guadalupe Loarca-Piña 3.1 Introduction 59 3.2 Beans By-products 62 3.3 Pea (Pisum sativum) By-products 68 3.4 Chickpea (Cicer arietinum) and Lentil (Lens culinaris) By-products 71 3.5 Lupin (Lupinus) By-products 72 3.6 Other Pulse By-products 74 3.6.1 Pigeon Pea (Cajanus cajan L.) 74 3.6.2 Broad Beans (Vicia faba) 75 3.7 Concluding Remarks 78 References 86 4 Aquafaba, from Food Waste to a Value-Added Product 93 Rana Mustafa and Martin J. T. Reaney 4.1 Introduction 93 4.2 Plant-based Dairy and Eggs Replacement 94 4.3 History of Use and Etymology 95 4.4 Composition of Chickpea and Aquafaba 96 4.5 Anti-nutritional Compounds 98 4.5.1 Protein Anti-nutritional Compounds 100 4.5.2 Nonprotein Anti-nutritional Compounds 100 4.6 Functional Properties 101 4.6.1 Water Holding Capacity and Oil Holding Capacity 102 4.6.2 Emulsion Stabilizer 103 4.6.3 Foaming Properties 104 4.6.4 Gelling and Thickening Properties 107 4.7 Factors Affecting Functional Properties 108 4.7.1 Effect of Cultivars and Genotypes 108 4.7.2 Effect of Processing Methods 110 4.8 Environmental Impact 112 4.9 Value-added Products for the Food and Pharmaceutical Industries 113 4.10 Current and Future Perspectives 115 4.11 Conclusion 116 References 116 5 Brazilian (North and Northeast) Fruit By-Products 127 Larissa Morais Ribeiro DA Silva, Paulo Henrique Machado de Sousa, Luiz Bruno de Sousa Sabino, Giovana Matias do Prado, Lucicleia Barros Vasconcelos Torres, Geraldo Arraes Maia, Raimundo Wilane de Figueiredo, and Nágila Maria Pontes Silva Ricardo 5.1 Introduction 127 5.2 Coproducts' Origin 131 5.3 Types of Waste Processing 131 5.4 Bioactive Compounds 132 5.4.1 Vitamin C 133 5.4.2 Phenolic Compounds 134 5.4.3 Antioxidant Activity in Fruit Coproducts 136 5.4.4 Phytosterols in Fruit Coproducts 141 5.5 Brazilian Fruit By-products from the North and Northeast as a Source of Colorants 141 5.6 Brazilian North and Northeast Fruit By-products as Source of Polysaccharides 144 5.7 Brazilian North and Northeast Fruit By-products as Source of Fibers 145 5.8 Conclusions 149 References 149 6 Health Benefits of Mango By-products 159 Abraham Wall-Medrano, Francisco J. Olivas-Aguirre, Jesus F. Ayala-Zavala, J. Abraham Domínguez-Avila, Gustavo A. Gonzalez-Aguilar, Luz A. Herrera-Cazares, and Marcela Gaytan-Martinez 6.1 Introduction 159 6.2 Mango Agro wastes and Industrial By-products 161 6.2.1 Impacts of Generating Mango Wastes and By-products 162 6.2.1.1 Economic Impact 163 6.2.1.2 Environmental Impact 163 6.2.2 Research and Development (R&D) 164 6.3 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1 Nutritional and Functional Value of Mango Wastes and By-products 165 6.3.1.1 Macro/Micronutrients 165 6.3.1.2 Dietary Fiber 166 6.3.1.3 Phenolic Compounds 168 6.3.2 Metabolic Fate of Phytochemicals from Mango By-products 170 6.4 Potential Health Benefits of Mango Wastes and By-products 171 6.4.1 Infectious Diseases 171 6.4.1.1 Antibiotic Effect: Planktonic Cells 172 6.4.1.2 Antibiotic Effect: Biofilms 174 6.4.1.3 Prebiotic Effects 176 6.4.2 Noncommunicable Chronic Diseases (NCCDs) 176 6.4.2.1 Obesity 177 6.4.2.2 Diabetes Mellitus 177 6.4.2.3 Cardiovascular Diseases (CVDs) 179 6.4.2.4 Cancer 180 6.4.2.5 Inflammatory Diseases 181 6.4.2.6 Neurological Diseases 182 Acknowledgements 182 References 183 7 Citrus Waste Recovery for Sustainable Nutrition and Health 193 Adriana Maite Fernández-Fernández, Eduardo Dellacassa, Alejandra Medrano-Fernandez, and María Dolores Del Castillo 7.1 Introduction 193 7.2 Citrus By-products: Natural Sources of Health-Promoting Food Ingredients 194 7.2.1 Polyphenols 196 7.2.2 Antioxidant dietary fiber 198 7.3 Health-Promoting Effects 200 7.4 Food Applications 208 7.5 Safety 210 7.6 Conclusions 210 Acknowledgments 210 References 211 8 Vegetable By-products 223 L. Gabriela Espinosa-Alonso, Maribel Valdez-Morales, Xochitl Aparicio-Fernandez, Sergio Medina-Godoy, and Fidel Guevara-Lara 8.1 Introduction 223 8.2 Global and/or by Region Vegetable Food Production and Postharvest Waste 226 8.2.1 Tomato 227 8.2.2 Chili 229 8.2.3 Broccoli and Cauliflower 229 8.2.4 Zucchini 230 8.2.5 Cucumber 230 8.3 Global and/or Regional Vegetable Industrialization and By-Product Generation 231 8.3.1 Tomato 231 8.3.2 Chili 232 8.3.3 Broccoli and Cauliflower 235 8.4 Nutraceutical Composition 236 8.4.1 Tomato 236 8.4.2 Chili 237 8.4.3 Broccoli and Cauliflower 238 8.4.4 Zucchini 239 8.4.5 Cucumber 241 8.5 Proven Nutraceutical In Vitro and In Vivo Bioactivity 242 8.5.1 Tomato 242 8.5.2 Chili 243 8.5.3 Broccoli and Cauliflower 245 8.5.4 Zucchini 245 8.5.4.1 Fruit 245 8.5.4.2 Peel 246 8.5.4.3 Leaves and Stems 247 8.5.5 Cucumber 247 8.5.5.1 Fruit 248 8.5.5.2 Seeds 249 8.5.5.3 Peel 250 8.5.5.4 Leaves and Stems 250 8.6 Methods and Strategies Used by the Food Sector and Other Industries 251 8.7 Commercialization or Transformation in Value-Added Products 253 8.7.1 Tomato 253 8.7.2 Seed Chili 254 8.7.3 Broccoli and Cauliflower 255 8.7.4 Zucchini 256 Acknowledgments 256 References 256 9 Flaxseed By-products 267 B. Dave Oomah 9.1 Introduction 267 9.2 Flaxseed Protein 269 9.2.1 Extraction 269 9.2.2 Composition 272 9.2.3 Amino Acid Profile 273 9.2.4 Product Application 275 9.3 Advanced Processing 276 9.4 Mucilage 277 9.5 Current Trends and Perspectives 278 Acknowledgments 283 References 283 10 Seed Hull Utilization 291 E.E. Martinez-Soberanes, R. Mustafa, Martin J.T. Reaney, and W.J. Zhang 10.1 Introduction 291 10.2 Seed Hull Production 292 10.3 Seed Hull Composition 294 10.3.1 Dietary Fiber (DF) 295 10.3.2 Phytochemicals 297 10.3.3 Protein and Other Minor Components 303 10.4 Dehulling Technology 304 10.4.1 Seed Dehulling 304 10.4.2 Dehulling Technology 305 10.5 Recovery of Compounds from Seed Hull 308 10.5.1 Traditional Solvent Extraction 309 10.5.2 Ultrasonic-Assisted Extraction 310 10.5.3 Microwave-Assisted Extraction 312 10.5.4 Supercritical Fluid Extraction 313 10.5.5 Membrane Separation 314 10.5.6 Seed Hull in Value-Added Food Products 316 10.6 Prospects and Challenges 316 References 317 11 Health Benefits of Spent Coffee Grounds 327 Norma Julieta Salazar-López, Carlos Vladimir López-Rodríguez, Diego Antonio Hernández-Montoya, and Rocio Campos-Vega 11.1 Introduction 327 11.2 Coffea Arabica L. Generalities 328 11.3 Coffee Processing and By-products 329 11.3.1 Coffee Husks 330 11.3.2 Coffee Pulp 330 11.3.3 Coffee Silverskin 331 11.3.4 Spent Coffee Grounds 331 11.4 Physicochemical Characteristics in SCG 331 11.5 Nutritional Properties of SCG 333 11.5.1 Carbohydrates 334 11.5.2 Proteins 336 11.5.3 Lipids 336 11.5.4 Minerals 337 11.5.5 Feed Quality 337 11.6 Nutraceuticals in SCG 338 11.6.1 Dietary Fiber 339 11.6.2 Resistant Starch 339 11.6.3 Antioxidant Compounds 340 11.6.4 Antioxidant Dietary Fiber 341 11.7 Health Benefits of Spent Coffee Grounds 341 11.7.1 Weight Management and Obesity 342 11.7.2 Cardiovascular Diseases 344 11.7.3 Gastrointestinal Diseases 345 11.7.4 Cancer 346 References 348 12 Health Benefits of Silverskin 353 Amaia Iriondo-DeHond, Teresa Herrera, and María Dolores Del Castillo 12.1 Introduction 353 12.2 Improvement of Gastrointestinal Health 358 12.3 Prevention of Metabolic Disorders 359 12.3.1 Obesity and Dyslipemia 360 12.3.2 Diabetes 362 12.4 Improvement of Skin Health 363 12.5 Conclusions 366 Acknowledgements 366 References 367 13 Cocoa By
products 373 Karen Haydeé Nieto Figueroa, Nancy Viridiana Mendoza García, and Rocio Campos-Vega 13.1 Introduction 373 13.2 Cocoa Bean Shell 376 13.2.1 Chemical Composition 376 13.2.2 Nutraceutical Composition 377 13.2.2.1 Dietary Fiber 377 13.2.2.2 Phenolic Compounds 378 13.2.2.3 Methylxanthines 379 13.2.2.4 Other Compounds 380 13.2.3 Applications 381 13.2.3.1 Feedstuff 381 13.2.3.2 Agriculture 382 13.2.3.3 Biofuels 382 13.2.3.4 Adsorbent 382 13.2.3.5 Dye 383 13.2.3.6 Food Products 383 13.2.3.7 Cocoa Shell Tea 383 13.2.3.8 Cocoa Hulls Polyphenols as a Functional Ingredient for Bakery Applications 383 13.2.3.9 BiöRecyclable Paper Packaging 384 13.2.3.10 Cocoa Shell Extracts 384 13.3 Cocoa Pod Husk 386 13.3.1 Chemical Composition 387 13.3.2 Drying Methods 387 13.3.3 Nutraceutical Composition 388 13.3.3.1 Dietary Fiber 388 13.3.3.2 Antioxidants 390 13.3.3.3 Theobromine 391 13.3.3.4 Other Compounds 392 13.3.4 Applications 393 13.3.4.1 Animal Feed 393 13.3.4.2 Soap Making 394 13.3.4.3 Activated Carbon 394 13.3.4.4 Fertilizer and Soil Organic Matter 394 13.3.4.5 Paper Making 395 13.3.4.6 Biofuels and Chemical Industry 395 13.3.4.7 Gums 396 13.3.4.8 Source of Enzymes 396 13.4 Cocoa Mucilage/Pulp/Sweating 396 13.4.1 Chemical Composition 397 13.4.2 Nutraceutical Composition 398 13.4.2.1 Dietary Fiber 398 13.4.2.2 Phenolic Content 398 13.4.3 Applications 399 13.4.3.1 Cocoa Juice 399 13.4.3.2 Cocoa Alcoholic Products 399 13.4.3.3 Pectin 400 13.4.3.4 Marmalade 400 13.4.3.5 Cocoa Jelly 401 13.4.3.6 Other Products 401 13.5 Technological Properties of Cocoa By
products 402 13.5.1 Water (WHC)
and Oil (OHC)
Holding and Swelling Capacities (SWC) 402 13.6 Concluding Remarks 402 References 403 14 Emerging and Potential Bio-Applications of Agro-Industrial By-products Through Implementation of Nanobiotechnology 413 Hayde Azeneth Vergara-Castañeda, Gabriel Luna-Bárcenas, and Héctor Pool 14.1 Introduction 413 14.2 Green Synthesis of Metallic Nanoparticles Mediated by Agro-Industrial Wastes 414 14.2.1 Gold Nanoparticles 417 14.2.2 Silver Nanoparticles 419 14.2.3 Quantum Dots 422 14.3 Agro-Industrial Wastes as Platforms for Biofunctional Nanocomposite Production 425 14.4 Nano-Drug Delivery Systems for Encapsulation, Protection, and Controlled Release of Bioactive Agents Extracted from Agro-Industrial Wastes 431 14.5 Concluding Remarks 435 References 436 Index 445