35,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
18 °P sammeln
  • Broschiertes Buch

In founding set theory, Cantor showed that the cardinality of the set Q of rational numbers is countably infinite; that Q may be extended by completion to obtain the set R of real numbers (we say that Q is countably dense in R); that any other countably dense subset of R is isomorphic to Q; and that R itself is uncountably infinite. The question then naturally arises whether all uncountably dense subsets of R of the same cardinality must also be isomorphic. Decades later, a negative answer was given when a model of set theory was constructed in which many uncountably dense subsets of R fail to…mehr

Produktbeschreibung
In founding set theory, Cantor showed that the cardinality of the set Q of rational numbers is countably infinite; that Q may be extended by completion to obtain the set R of real numbers (we say that Q is countably dense in R); that any other countably dense subset of R is isomorphic to Q; and that R itself is uncountably infinite. The question then naturally arises whether all uncountably dense subsets of R of the same cardinality must also be isomorphic. Decades later, a negative answer was given when a model of set theory was constructed in which many uncountably dense subsets of R fail to be isomorphic. On the other hand, Baumgartner has shown by the method of forcing that another model exists in which all dense subsets of R of the least uncountable cardinality are isomorphic. Presented here is a detailed yet expository account of Baumgartner's famous result with a brief discussion of its relevance to forcing axioms in contemporary set theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
The author holds a master's degree in mathematics and a doctorate in physics. He is currently a lecturer in mathematics at San Jose State University. His research interests include the possible application of strong axioms for set theory to physics.