This book is a comprehensive guide that explores the intersection of artificial intelligence and forecasting, providing the latest insights and trends in this rapidly evolving field. The book contains fourteen chapters covering a wide range of topics, including the concept of AI, its impact on economic decision-making, traditional and machine learning-based forecasting methods, challenges in demand forecasting, global forecasting models, meta-learning and feature-based forecasting, ensembling, deep learning, scalability in industrial and optimization applications, and forecasting…mehr
This book is a comprehensive guide that explores the intersection of artificial intelligence and forecasting, providing the latest insights and trends in this rapidly evolving field.
The book contains fourteen chapters covering a wide range of topics, including the concept of AI, its impact on economic decision-making, traditional and machine learning-based forecasting methods, challenges in demand forecasting, global forecasting models, meta-learning and feature-based forecasting, ensembling, deep learning, scalability in industrial and optimization applications, and forecasting performance evaluation. With key illustrations, state-of-the-art implementations, best practices, and notable advances, this book offers practical insights into the theory and practice of AI-based forecasting. This book is a valuable resource for anyone involved in forecasting, including forecasters, statisticians, data scientists, business analysts, or decision-makers.
Produktdetails
Produktdetails
Palgrave Advances in the Economics of Innovation and Technology
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Mohsen Hamoudia is CEO since 2020 of PREDICONSULT (Data and Predictive Analytics), Paris. He is a consultant to several consulting companies in Europe and the US. His research is primarily focused on economics and empirical aspects of forecasting in air transportation, telecommunications, IT (Information and Technologies), social networking, and innovation and new technologies Spyros Makridakis is a Professor at the University of Nicosia and the founder of the Makridakis Open Forecasting Center (MOFC). He is also an Emeritus Professor at INSEAD, he joined in 1970. He has authored/co-authored, 27 books/special and more than 360 articles. He was the founding editor-in-chief of the Journal of Forecasting and the International Journal of Forecasting and is the organizer of the renowned M (Makridakis) competitions. Evangelos Spiliotis is a Research Fellow at the Forecasting & Strategy Unit, National Technical University of Athens. Hisresearch focuses on time series forecasting with machine learning, while his work on tools for management support. He has co-organized the M4, M5, and M6 forecasting competitions.
Inhaltsangabe
Part I. Artificial intelligence : present and future.- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA).- 2. Expecting the future: How AI's potential performance will shape current behavior.- Part II. The status of machine learning methods for time series and new products forecasting.- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future.- 4. Machine Learning for New Product Forecasting.- Part III. Global forecasting models.- 5. Forecasting in Big Data with Global Forecasting Models.- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning.- 7. Handling Concept Drift in Global Time Series Forecasting.- 8. Neural network ensembles for univariate time series forecasting.- Part IV. Meta-learning and feature-based forecasting.- 9. Large scale time series forecasting with meta-learning.- 10. Forecasting large collections of time series: feature-based methods.- Part V. Special applications.- 11. Deep Learning based Forecasting: a case study from the online fashion industry.- 12. The intersection of machine learning with forecasting and optimisation: theory and applications.- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting.- 14. The FVA framework for evaluating forecasting performance.
Part I. Artificial intelligence : present and future.- 1. Human intelligence (HI) versus artificial intelligence (AI) and intelligence augmentation (IA).- 2. Expecting the future: How AI's potential performance will shape current behavior.- Part II. The status of machine learning methods for time series and new products forecasting.- 3. Forecasting with statistical, machine learning, and deep learning models: Past, present and future.- 4. Machine Learning for New Product Forecasting.- Part III. Global forecasting models.- 5. Forecasting in Big Data with Global Forecasting Models.- 6. How to leverage data for Time Series Forecasting with Artificial Intelligence models: Illustrations and Guidelines for Cross-learning.- 7. Handling Concept Drift in Global Time Series Forecasting.- 8. Neural network ensembles for univariate time series forecasting.- Part IV. Meta-learning and feature-based forecasting.- 9. Large scale time series forecasting with meta-learning.- 10. Forecasting large collections of time series: feature-based methods.- Part V. Special applications.- 11. Deep Learning based Forecasting: a case study from the online fashion industry.- 12. The intersection of machine learning with forecasting and optimisation: theory and applications.- 13. Enhanced forecasting with LSTVAR-ANN hybrid model: application in monetary policy and inflation forecasting.- 14. The FVA framework for evaluating forecasting performance.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826